{TensorFlow}: a system for {Large-Scale} machine learning M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 56701* | 2016 |
Searching for mobilenetv3 A Howard, M Sandler, G Chu, LC Chen, B Chen, M Tan, W Wang, Y Zhu, ... Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 8649 | 2019 |
Learning transferable architectures for scalable image recognition B Zoph, V Vasudevan, J Shlens, QV Le Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 7275 | 2018 |
In-datacenter performance analysis of a tensor processing unit NP Jouppi, C Young, N Patil, D Patterson, G Agrawal, R Bajwa, S Bates, ... Proceedings of the 44th annual international symposium on computer …, 2017 | 5617 | 2017 |
Mnasnet: Platform-aware neural architecture search for mobile M Tan, B Chen, R Pang, V Vasudevan, M Sandler, A Howard, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 3691 | 2019 |
Scalability in perception for autonomous driving: Waymo open dataset P Sun, H Kretzschmar, X Dotiwalla, A Chouard, V Patnaik, P Tsui, J Guo, ... Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 2931 | 2020 |
Autoaugment: Learning augmentation strategies from data ED Cubuk, B Zoph, D Mane, V Vasudevan, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 2646 | 2019 |
Autoaugment: Learning augmentation policies from data ED Cubuk, B Zoph, D Mane, V Vasudevan, QV Le arXiv preprint arXiv:1805.09501, 2018 | 2003 | 2018 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1583 | 2023 |
Palm 2 technical report R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ... arXiv preprint arXiv:2305.10403, 2023 | 1248 | 2023 |
Coca: Contrastive captioners are image-text foundation models J Yu, Z Wang, V Vasudevan, L Yeung, M Seyedhosseini, Y Wu arXiv preprint arXiv:2205.01917, 2022 | 1201 | 2022 |
Scaling autoregressive models for content-rich text-to-image generation J Yu, Y Xu, JY Koh, T Luong, G Baid, Z Wang, V Vasudevan, A Ku, Y Yang, ... arXiv preprint arXiv:2206.10789 2 (3), 5, 2022 | 891 | 2022 |
Understanding and simplifying one-shot architecture search G Bender, PJ Kindermans, B Zoph, V Vasudevan, Q Le International conference on machine learning, 550-559, 2018 | 875 | 2018 |
FAWN: A fast array of wimpy nodes DG Andersen, J Franklin, M Kaminsky, A Phanishayee, L Tan, ... Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles …, 2009 | 797 | 2009 |
Safe and effective fine-grained TCP retransmissions for datacenter communication V Vasudevan, A Phanishayee, H Shah, E Krevat, DG Andersen, ... ACM SIGCOMM computer communication review 39 (4), 303-314, 2009 | 588 | 2009 |
Tensorflow: A system for large-scale machine learning A Martín, B Paul, C Jianmin, C Zhifeng, D Andy, D Jeffrey, D Matthieu, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 538 | 2016 |
TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467 52, 2015 | 520 | 2015 |
Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset S Ettinger, S Cheng, B Caine, C Liu, H Zhao, S Pradhan, Y Chai, B Sapp, ... Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 496 | 2021 |
Neural optimizer search with reinforcement learning I Bello, B Zoph, V Vasudevan, QV Le International Conference on Machine Learning, 459-468, 2017 | 447 | 2017 |
End-to-end multi-view fusion for 3d object detection in lidar point clouds Y Zhou, P Sun, Y Zhang, D Anguelov, J Gao, T Ouyang, J Guo, J Ngiam, ... Conference on Robot Learning, 923-932, 2020 | 413 | 2020 |