Sergio Oramas
Sergio Oramas
Verified email at
Cited by
Cited by
Freesound datasets: a platform for the creation of open audio datasets
E Fonseca, J Pons Puig, X Favory, F Font Corbera, D Bogdanov, ...
Hu X, Cunningham SJ, Turnbull D, Duan Z, editors. Proceedings of the 18th …, 2017
Sound and music recommendation with knowledge graphs
S Oramas, VC Ostuni, TD Noia, X Serra, ED Sciascio
ACM Transactions on Intelligent Systems and Technology (TIST) 8 (2), 1-21, 2016
Multi-label music genre classification from audio, text, and images using deep features
S Oramas, O Nieto, F Barbieri, X Serra
arXiv preprint arXiv:1707.04916, 2017
Multimodal deep learning for music genre classification
S Oramas, F Barbieri, O Nieto Caballero, X Serra
Transactions of the International Society for Music Information Retrieval …, 2018
SemEval-2018 task 9: Hypernym discovery
J Camacho-Collados, CD Bovi, LE Anke, S Oramas, T Pasini, E Santus, ...
Proceedings of the 12th international workshop on semantic evaluation, 712-724, 2018
A deep multimodal approach for cold-start music recommendation
S Oramas, O Nieto, M Sordo, X Serra
Proceedings of the 2nd workshop on deep learning for recommender systems, 32-37, 2017
Multimodal metric learning for tag-based music retrieval
M Won, S Oramas, O Nieto, F Gouyon, X Serra
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
Information extraction for knowledge base construction in the music domain
S Oramas, L Espinosa-Anke, M Sordo, H Saggion, X Serra
Data & Knowledge Engineering 106, 70-83, 2016
Exploring customer reviews for music genre classification and evolutionary studies
S Oramas, L Espinosa-Anke, A Lawlor
ELMD: An automatically generated entity linking gold standard dataset in the music domain
S Oramas, LE Anke, M Sordo, H Saggion, X Serra
Proceedings of the Tenth International Conference on Language Resources and …, 2016
A semantic-based approach for artist similarity
S Oramas, M Sordo, L Espinosa-Anke, X Serra
Müller M, Wiering F, editors. Proceedings of the 16th International Society …, 2015
Supervised and unsupervised learning of audio representations for music understanding
MC McCallum, F Korzeniowski, S Oramas, F Gouyon, AF Ehmann
arXiv preprint arXiv:2210.03799, 2022
The acousticbrainz genre dataset: Multi-source, multi-level, multi-label, and large-scale
D Bogdanov, A Porter, H Schreiber, J Urbano, S Oramas
Proceedings of the 20th Conference of the International Society for Music …, 2019
Tracking melodic patterns in flamenco singing by analyzing polyphonic music recordings
A Pikrakis, F Gómez, S Oramas, JM Díaz Báńez, J Mora Roche, ...
Proceedings of the 13th International Society for Music Information …, 2012
Natural language processing for music knowledge discovery
S Oramas, L Espinosa-Anke, F Gómez, X Serra
Journal of New Music Research 47 (4), 365-382, 2018
Mood classification using listening data
F Korzeniowski, O Nieto, M McCallum, M Won, S Oramas, E Schmidt
arXiv preprint arXiv:2010.11512, 2020
Open knowledge extraction challenge 2017
R Speck, M Röder, S Oramas, L Espinosa-Anke, AC Ngonga Ngomo
Semantic Web Challenges: 4th SemWebEval Challenge at ESWC 2017, Portoroz …, 2017
Artist similarity with graph neural networks
F Korzeniowski, S Oramas, F Gouyon
arXiv preprint arXiv:2107.14541, 2021
Extracting relations from unstructured text sources for music recommendation
M Sordo, S Oramas, L Espinosa-Anke
Natural Language Processing and Information Systems: 20th International …, 2015
Flabase: Towards the creation of a flamenco music knowledge base
S Oramas, F Gómez, E Gómez Gutiérrez, J Mora
Müller M, Wiering F, editors. ISMIR 2015. 16th International Society for …, 2015
The system can't perform the operation now. Try again later.
Articles 1–20