Fadhel Ayed
Fadhel Ayed
Department of Statistics, University of Oxford
Dirección de correo verificada de
Citado por
Citado por
Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior
F Ayed, J Lee, F Caron
International Conference on Machine Learning 97, 395-404, 2019
Anomaly detection at scale: The case for deep distributional time series models
F Ayed, L Stella, T Januschowski, J Gasthaus
International Conference on Service-Oriented Computing, 97-109, 2020
On consistent and rate optimal estimation of the missing mass
M Battiston, F Ayed, F Camerlenghi, S Favaro
Annales de l’institut Henri Poincare (B) Probability and Statistics 1 (3), 2020
A Good-Turing estimator for feature allocation models
F Ayed, M Battiston, F Camerlenghi, S Favaro
Electronic Journal of Statistics 13 (2), 3775-3804, 2019
Regularization in ResNet with Stochastic Depth
S Hayou, F Ayed
Advances in Neural Information Processing Systems 34, 15464-15474, 2021
Nonnegative Bayesian nonparametric factor models with completely random measures
F Ayed, F Caron
Statistics and Computing 31, 1-24, 2021
Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility
H Lee, F Ayed, P Jung, J Lee, H Yang, F Caron
Journal of Machine Learning Research 24 (289), 1-78, 2023
Large Language Models for Telecom: Forthcoming Impact on the Industry
A Maatouk, N Piovesan, F Ayed, A De Domenico, M Debbah
arXiv preprint arXiv:2308.06013, 2023
Accordion: A Communication-Aware Machine Learning Framework for Next Generation Networks
F Ayed, A De Domenico, A Garcia-Rodriguez, D López-Pérez
IEEE Communications Magazine 61 (6), 104-110, 2023
Consistent estimation of small masses in feature sampling
F Ayed, M Battiston, F Camerlenghi, S Favaro
The Journal of Machine Learning Research 22 (1), 250-277, 2021
TeleQnA: A Benchmark Dataset to Assess Large Language Models Telecommunications Knowledge
A Maatouk, F Ayed, N Piovesan, A De Domenico, M Debbah, ZQ Luo
arXiv preprint arXiv:2310.15051, 2023
Data pruning and neural scaling laws: fundamental limitations of score-based algorithms
F Ayed, S Hayou
arXiv preprint arXiv:2302.06960, 2023
An information theoretic approach to post randomization methods under differential privacy
F Ayed, M Battiston, F Camerlenghi
Statistics and Computing 30 (5), 1347-1361, 2020
The normal-generalised gamma-Pareto process: a novel pure-jump Lévy process with flexible tail and jump-activity properties
F Ayed, J Lee, FLR Caron
Bayesian Analysis, 2022
The curse of (non) convexity: The case of an Optimization-Inspired Data Pruning algorithm
F Ayed, S Hayou
I Can't Believe It's Not Better Workshop: Understanding Deep Learning …, 2022
A Mathematical Framework for the Evaluation of System Expected Utility Not Satis-fied Under Periodic Demand
A Maatouk, F Ayed, W Li, H Bao, D Miao, K Lin, X Chen, E Zio
the 32nd European Safety and Reliability Conference (ESREL 2022).[Online …, 2022
FlexTrain: A Dynamic Training Framework for Heterogeneous Devices Environments
M Unsal, A Maatouk, A De Domenico, N Piovesan, F Ayed
arXiv preprint arXiv:2310.20457, 2023
An Optimization Framework For Anomaly Detection Scores Refinement With Side Information
A Maatouk, F Ayed, W Li, Y Wang, H Zhu, J Ye
arXiv preprint arXiv:2304.11039, 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
F Caron, F Ayed, P Jung, H Lee, J Lee, H Yang
arXiv preprint arXiv:2302.01002, 2023
A Framework for the Evaluation of Network Reliability Under Periodic Demand
A Maatouk, F Ayed, S Biao, W Li, H Bao, E Zio
arXiv preprint arXiv:2301.05589, 2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20