Mobilenets: Efficient convolutional neural networks for mobile vision applications AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ... arXiv preprint arXiv:1704.04861, 2017 | 22384 | 2017 |
Facenet: A unified embedding for face recognition and clustering F Schroff, D Kalenichenko, J Philbin Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 14822 | 2015 |
Quantization and training of neural networks for efficient integer-arithmetic-only inference B Jacob, S Kligys, B Chen, M Zhu, M Tang, A Howard, H Adam, ... Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 2766 | 2018 |
Looking fast and slow: Memory-guided mobile video object detection M Liu, M Zhu, M White, Y Li, D Kalenichenko arXiv preprint arXiv:1903.10172, 2019 | 99 | 2019 |
Generating numeric embeddings of images JW Philbin, GF Schroff, D Kalenichenko US Patent 9,836,641, 2017 | 76 | 2017 |
Mnasfpn: Learning latency-aware pyramid architecture for object detection on mobile devices B Chen, G Ghiasi, H Liu, TY Lin, D Kalenichenko, H Adam, QV Le Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 54 | 2020 |
Mobilenets: Efficient convolutional neural networks for mobile vision applications M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand arXiv preprint arXiv: 1704.04861, 2017, 2017 | 51 | 2017 |
Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv: 170404861 AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ... URL http://arxiv. org/abs/1704.04861, 2017 | 46 | 2017 |
Efficient convolutional neural networks and techniques to reduce associated computational costs AG Howard, B Chen, D Kalenichenko, TC Weyand, M Zhu, M Andreetto, ... US Patent 11,157,814, 2021 | 39 | 2021 |
Identifying consumers in a transaction via facial recognition S Chandrasekaran, D Kalenichenko, TR Zwiebel US Patent 9,619,803, 2017 | 35 | 2017 |
& Adam, H.(2017) AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand Mobilenets: Efficient convolutional neural networks for mobile vision …, 0 | 34 | |
Identifying consumers via facial recognition to provide services S Chandrasekaran, D Ho, D Kalenichenko, V Chitilian, TR Zwiebel, ... US Patent 10,733,587, 2020 | 33 | 2020 |
Facial profile password to modify user account data for hands-free transactions S Chandrasekaran, D Ho, D Kalenichenko, V Chitilian, TR Zwiebel, ... US Patent 10,397,220, 2019 | 19 | 2019 |
Mobilenets: Efficient convolutional neural networks for mobile vision applications, cite AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ... arXiv preprint arxiv:1704.04861 575, 2017 | 19 | 2017 |
Identifying consumers in a transaction via facial recognition S Chandrasekaran, D Kalenichenko, TR Zwiebel US Patent 10,726,407, 2020 | 18 | 2020 |
Facial profile modification for hands free transactions S Chandrasekaran, D Ho, D Kalenichenko, V Chitilian, TR Zwiebel, ... US Patent 10,482,463, 2019 | 16 | 2019 |
Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ... arXiv preprint arXiv:1704.04861, 0 | 13 | |
Generating object embeddings from images GF Schroff, D Kalenichenko, K Ye US Patent 10,657,359, 2020 | 5 | 2020 |
Memory-Guided Video Object Detection M Zhu, M Liu, MC White, D Kalenichenko, Y Li US Patent App. 17/432,221, 2022 | 2 | 2022 |
M.; and Adam, H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, TA Weyand CoRR.[2021-05-15]. https://arxiv. org/abs/1704.04861, 0 | 2 | |