Seguir
Stefano Teso
Stefano Teso
Senior Assistant Professor, University of Trento
Dirección de correo verificada de unitn.it
Título
Citado por
Citado por
Año
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P Schramowski, W Stammer, S Teso, A Brugger, F Herbert, X Shao, ...
Nature Machine Intelligence 2 (8), 476-486, 2020
2762020
Explanatory interactive machine learning
S Teso, K Kersting
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 239-245, 2019
2752019
Learning constraints from examples
L De Raedt, A Passerini, S Teso
Thirty-Second AAAI Conference on Artificial Intelligence, 2018
1002018
Semantic probabilistic layers for neuro-symbolic learning
K Ahmed, S Teso, KW Chang, G Van den Broeck, A Vergari
Advances in Neural Information Processing Systems 35, 29944-29959, 2022
952022
A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries
A Vergari, YJ Choi, A Liu, S Teso, GV Broeck
Advances in Neural Information Processing Systems 34, 2021
73*2021
Leveraging explanations in interactive machine learning: An overview
S Teso, Ö Alkan, W Stammer, E Daly
Frontiers in Artificial Intelligence 6, 2023
602023
Learning SMT (LRA) constraints using SMT solvers
S Kolb, S Teso, A Passerini, L De Raedt
Proceedings of the Twenty-Seventh International Joint Conference on …, 2018
592018
Glancenets: Interpretable, leak-proof concept-based models
E Marconato, A Passerini, S Teso
Advances in Neural Information Processing Systems 35, 21212-21227, 2022
582022
Structured learning modulo theories
S Teso, R Sebastiani, A Passerini
Artificial Intelligence 244, 166-187, 2017
512017
Concept-level Debugging of Part-Prototype Networks
A Bontempelli, S Teso, F Giunchiglia, A Passerini
arXiv preprint arXiv:2205.15769, 2022
452022
Interactive label cleaning with example-based explanations
S Teso, A Bontempelli, F Giunchiglia, A Passerini
Advances in Neural Information Processing Systems 34, 2021
432021
Constructive preference elicitation by setwise max-margin learning
S Teso, A Passerini, P Viappiani
arXiv preprint arXiv:1604.06020, 2016
392016
Efficient Generation of Structured Objects with Constrained Adversarial Networks
L Di Liello, P Ardino, J Gobbi, P Morettin, S Teso, A Passerini
Advances in Neural Information Processing Systems 33, 2020
36*2020
Putting human behavior predictability in context
W Zhang, Q Shen, S Teso, B Lepri, A Passerini, I Bison, F Giunchiglia
EPJ Data Science 10 (1), 42, 2021
352021
Not all neuro-symbolic concepts are created equal: Analysis and mitigation of reasoning shortcuts
E Marconato, S Teso, A Vergari, A Passerini
Advances in Neural Information Processing Systems 36, 2024
272024
Federated Multi-Task Attention for Cross-Individual Human Activity Recognition
Q Shen, H Feng, R Song, S Teso, F Giunchiglia, H Xu
International Joint Conference on Artificial Intelligence, 2022
252022
Constructive preference elicitation
P Dragone, S Teso, A Passerini
Frontiers in Robotics and AI 4, 71, 2018
252018
Neuro-Symbolic Constraint Programming for Structured Prediction
P Dragone, S Teso, A Passerini
15th International Workshop on Neural-Symbolic Learning and Reasoning, 2021
242021
Toward Faithful Explanatory Active Learning with Self-explainable Neural Nets
S Teso
Proceedings of the Workshop on Interactive Adaptive Learning (IAL 2019), 4-16, 2019
222019
Investigating the association between social interactions and personality states dynamics
D Gundogdu, AN Finnerty, J Staiano, S Teso, A Passerini, F Pianesi, ...
Royal Society open science 4 (9), 170194, 2017
222017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20