Follow
Barnabas Poczos
Barnabas Poczos
Associate professor, Carnegie Mellon University
Verified email at cs.cmu.edu - Homepage
Title
Cited by
Cited by
Year
Deep sets
M Zaheer, S Kottur, S Ravanbakhsh, B Poczos, RR Salakhutdinov, ...
Advances in neural information processing systems 30, 2017
28252017
Mmd gan: Towards deeper understanding of moment matching network
CL Li, WC Chang, Y Cheng, Y Yang, B Póczos
Advances in neural information processing systems 30, 2017
8452017
Gradient descent provably optimizes over-parameterized neural networks
SS Du, X Zhai, B Poczos, A Singh
arXiv preprint arXiv:1810.02054, 2018
8062018
Bayesian optimization with robust bayesian neural networks
JT Springenberg, A Klein, S Falkner, F Hutter
Advances in Neural Information Processing Systems, 4134-4142, 2016
787*2016
Neural architecture search with bayesian optimisation and optimal transport
K Kandasamy, W Neiswanger, J Schneider, B Poczos, EP Xing
Advances in neural information processing systems 31, 2018
7032018
Stochastic variance reduction for nonconvex optimization
SJ Reddi, A Hefny, S Sra, B Poczos, A Smola
International conference on machine learning, 314-323, 2016
6742016
Characterizing and avoiding negative transfer
Z Wang, Z Dai, B Póczos, J Carbonell
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
5542019
High dimensional Bayesian optimisation and bandits via additive models
K Kandasamy, J Schneider, B Póczos
International conference on machine learning, 295-304, 2015
4162015
Found in translation: Learning robust joint representations by cyclic translations between modalities
H Pham, PP Liang, T Manzini, LP Morency, B Póczos
Proceedings of the AAAI conference on artificial intelligence 33 (01), 6892-6899, 2019
4042019
One network to solve them all--solving linear inverse problems using deep projection models
JH Rick Chang, CL Li, B Poczos, BVK Vijaya Kumar, ...
Proceedings of the IEEE International Conference on Computer Vision, 5888-5897, 2017
3902017
Competence-based curriculum learning for neural machine translation
EA Platanios, O Stretcu, G Neubig, B Poczos, TM Mitchell
arXiv preprint arXiv:1903.09848, 2019
3492019
Gradient descent can take exponential time to escape saddle points
SS Du, C Jin, JD Lee, MI Jordan, A Singh, B Poczos
Advances in neural information processing systems 30, 2017
2952017
Graph neural tangent kernel: Fusing graph neural networks with graph kernels
SS Du, K Hou, RR Salakhutdinov, B Poczos, R Wang, K Xu
Advances in neural information processing systems 32, 2019
2912019
Parallelised Bayesian optimisation via Thompson sampling
K Kandasamy, A Krishnamurthy, J Schneider, B Póczos
International conference on artificial intelligence and statistics, 133-142, 2018
2812018
Equivariance through parameter-sharing
S Ravanbakhsh, J Schneider, B Poczos
International conference on machine learning, 2892-2901, 2017
2592017
Multi-fidelity bayesian optimisation with continuous approximations
K Kandasamy, G Dasarathy, J Schneider, B Póczos
International conference on machine learning, 1799-1808, 2017
2552017
Point cloud gan
CL Li, M Zaheer, Y Zhang, B Poczos, R Salakhutdinov
arXiv preprint arXiv:1810.05795, 2018
2532018
Gradient descent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima
S Du, J Lee, Y Tian, A Singh, B Poczos
International Conference on Machine Learning, 1339-1348, 2018
2472018
Learning to predict the cosmological structure formation
S He, Y Li, Y Feng, S Ho, S Ravanbakhsh, W Chen, B Póczos
Proceedings of the National Academy of Sciences 116 (28), 13825-13832, 2019
2442019
Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly
K Kandasamy, KR Vysyaraju, W Neiswanger, B Paria, CR Collins, ...
Journal of Machine Learning Research 21 (81), 1-27, 2020
2192020
The system can't perform the operation now. Try again later.
Articles 1–20