Seguir
Marco Tulio Ribeiro
Marco Tulio Ribeiro
Google DeepMind
Dirección de correo verificada de cs.washington.edu - Página principal
Título
Citado por
Citado por
Año
" Why Should I Trust You?": Explaining the Predictions of Any Classifier
MT Ribeiro, S Singh, C Guestrin
Knowledge Discovery and Data Mining (ACM KDD), 2016
194552016
Sparks of artificial general intelligence: Early experiments with gpt-4
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
arXiv preprint arXiv:2303.12712, 2023
28152023
Anchors: High-Precision Model-Agnostic Explanations
MT Ribeiro, S Singh, C Guestrin
AAAI, 2018
24582018
Model-agnostic interpretability of machine learning
MT Ribeiro, S Singh, C Guestrin
arXiv preprint arXiv:1606.05386, 2016
12372016
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
MT Ribeiro, T Wu, C Guestrin, S Singh
Association for Computational Linguistics (ACL), 2020
10602020
Does the whole exceed its parts? the effect of ai explanations on complementary team performance
G Bansal, T Wu, J Zhou, R Fok, B Nushi, E Kamar, MT Ribeiro, D Weld
Proceedings of the 2021 CHI conference on human factors in computing systems …, 2021
5522021
Semantically Equivalent Adversarial Rules for Debugging NLP Models
MT Ribeiro, S Singh, C Guestrin
Association for Computational Linguistics (ACL), 2018
5312018
Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
arXiv preprint arXiv:2303.12712, 2023
3052023
Editing models with task arithmetic
G Ilharco, MT Ribeiro, M Wortsman, S Gururangan, L Schmidt, ...
arXiv preprint arXiv:2212.04089, 2022
2692022
Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models
T Wu, MT Ribeiro, J Heer, DS Weld
arXiv preprint arXiv:2101.00288, 2021
263*2021
Multiobjective pareto-efficient approaches for recommender systems
MT Ribeiro, N Ziviani, ESD Moura, I Hata, A Lacerda, A Veloso
ACM Transactions on Intelligent Systems and Technology (TIST) 5 (4), 1-20, 2014
1672014
Pareto-efficient hybridization for multi-objective recommender systems
MT Ribeiro, A Lacerda, A Veloso, N Ziviani
Proceedings of the sixth ACM conference on Recommender systems, 19-26, 2012
1652012
why should i trust you?”: explaining the predictions of any classifier; 2016
MT Ribeiro, S Singh, C Guestrin
arXiv preprint arXiv:1602.04938, 2019
1532019
Errudite: Scalable, reproducible, and testable error analysis
T Wu, MT Ribeiro, J Heer, DS Weld
Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019
1492019
Art: Automatic multi-step reasoning and tool-use for large language models
B Paranjape, S Lundberg, S Singh, H Hajishirzi, L Zettlemoyer, ...
arXiv preprint arXiv:2303.09014, 2023
1452023
Do feature attribution methods correctly attribute features?
Y Zhou, S Booth, MT Ribeiro, J Shah
Proceedings of the AAAI Conference on Artificial Intelligence 36 (9), 9623-9633, 2022
1412022
Are red roses red? evaluating consistency of question-answering models
MT Ribeiro, C Guestrin, S Singh
Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019
1092019
Nothing else matters: Model-agnostic explanations by identifying prediction invariance
MT Ribeiro, S Singh, C Guestrin
arXiv preprint arXiv:1611.05817, 2016
932016
Why Should I Trust You?": Explaining the Predictions of Any Classifier. CoRR abs/1602.04938 (2016)
MT Ribeiro, S Singh, C Guestrin
arXiv preprint arXiv:1602.04938, 2016
822016
Adaptive testing and debugging of nlp models
MT Ribeiro, S Lundberg
Proceedings of the 60th Annual Meeting of the Association for Computational …, 2022
752022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20