Compressive transformers for long-range sequence modelling JW Rae, A Potapenko, SM Jayakumar, TP Lillicrap ICLR 2020, 2019 | 191 | 2019 |
Stabilizing transformers for reinforcement learning E Parisotto, F Song, J Rae, R Pascanu, C Gulcehre, S Jayakumar, ... International conference on machine learning, 7487-7498, 2020 | 139 | 2020 |
Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 81 | 2021 |
Adapting auxiliary losses using gradient similarity Y Du, WM Czarnecki, SM Jayakumar, M Farajtabar, R Pascanu, ... arXiv preprint arXiv:1812.02224, 2018 | 79 | 2018 |
Memory-based parameter adaptation P Sprechmann, SM Jayakumar, JW Rae, A Pritzel, AP Badia, B Uria, ... ICLR 2018, 2018 | 70 | 2018 |
Distilling Policy Distillation WM Czarnecki, R Pascanu, S Osindero, SM Jayakumar, G Swirszcz, ... AISTATS 2019, 2019 | 64 | 2019 |
Been there, done that: Meta-learning with episodic recall S Ritter, JX Wang, Z Kurth-Nelson, SM Jayakumar, C Blundell, R Pascanu, ... ICML 2018, 2018 | 63 | 2018 |
Information asymmetry in KL-regularized RL A Galashov, SM Jayakumar, L Hasenclever, D Tirumala, J Schwarz, ... ICLR 2019, 2019 | 62 | 2019 |
Multiplicative interactions and where to find them SM Jayakumar, WM Czarnecki, J Menick, J Schwarz, J Rae, S Osindero, ... ICLR 2020, 2020 | 59 | 2020 |
Mix&match-agent curricula for reinforcement learning WM Czarnecki, SM Jayakumar, M Jaderberg, L Hasenclever, YW Teh, ... ICML 2018, 2018 | 56 | 2018 |
Meta-learning of sequential strategies PA Ortega, JX Wang, M Rowland, T Genewein, Z Kurth-Nelson, ... arXiv preprint arXiv:1905.03030, 2019 | 45 | 2019 |
Top-kast: Top-k always sparse training S Jayakumar, R Pascanu, J Rae, S Osindero, E Elsen Advances in Neural Information Processing Systems 33, 20744-20754, 2020 | 31 | 2020 |
Powerpropagation: A sparsity inducing weight reparameterisation J Schwarz, S Jayakumar, R Pascanu, PE Latham, Y Teh Advances in Neural Information Processing Systems 34, 28889-28903, 2021 | 6 | 2021 |
Low-pass recurrent neural networks-a memory architecture for longer-term correlation discovery T Stepleton, R Pascanu, W Dabney, SM Jayakumar, H Soyer, R Munos arXiv preprint arXiv:1805.04955, 2018 | 4 | 2018 |
Perception-Prediction-Reaction Agents for Deep Reinforcement Learning A Stooke, V Dalibard, SM Jayakumar, WM Czarnecki, M Jaderberg Workshop on “Structure & Priors in Reinforcement Learning” at ICLR 2019, 2019 | 1 | 2019 |
Reinforcement learning using agent curricula W Czarnecki, S Jayakumar US Patent 11,113,605, 2021 | | 2021 |
Machine learning systems with memory based parameter adaptation for learning fast and slower P Sprechmann, S Jayakumar, JW Rae, A Pritzel, AP Badia, O Vinyals, ... US Patent App. 16/759,561, 2020 | | 2020 |