Guoqi Li
Guoqi Li
Professor, Institue of Automation,Chinese Academy of Sciences,Previously Tsinghua University
Dirección de correo verificada de - Página principal
Citado por
Citado por
Spatio-temporal backpropagation for training high-performance spiking neural networks
Y Wu, L Deng, G Li, J Zhu, L Shi
Frontiers in neuroscience 12, 331, 2018
Towards artificial general intelligence with hybrid Tianjic chip architecture
J Pei, L Deng, S Song, M Zhao, Y Zhang, S Wu, G Wang, Z Zou, Z Wu, ...
Nature 572 (7767), 106-111, 2019
Model compression and hardware acceleration for neural networks: A comprehensive survey
L Deng, G Li, S Han, L Shi, Y Xie
Proceedings of the IEEE 108 (4), 485-532, 2020
Training and inference with integers in deep neural networks
S Wu, G Li, F Chen, L Shi
arXiv preprint arXiv:1802.04680, 2018
Direct training for spiking neural networks: Faster, larger, better
Y Wu, L Deng, G Li, J Zhu, Y Xie, L Shi
Proceedings of the AAAI conference on artificial intelligence 33 (01), 1311-1318, 2019
Cifar10-dvs: an event-stream dataset for object classification
H Li, H Liu, X Ji, G Li, L Shi
Frontiers in neuroscience 11, 309, 2017
Few-shot image recognition with knowledge transfer
Z Peng, Z Li, J Zhang, Y Li, GJ Qi, J Tang
Proceedings of the IEEE/CVF international conference on computer vision, 441-449, 2019
Rethinking the performance comparison between SNNS and ANNS
L Deng, Y Wu, X Hu, L Liang, Y Ding, G Li, G Zhao, P Li, Y Xie
Neural networks 121, 294-307, 2020
GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework
L Deng, P Jiao, J Pei, Z Wu, G Li
Neural Networks 100, 49-58, 2018
Continuous and noninvasive blood pressure measurement: a novel modeling methodology of the relationship between blood pressure and pulse wave velocity
Y Chen, C Wen, G Tao, M Bi, G Li
Annals of biomedical engineering 37, 2222-2233, 2009
-Norm Batch Normalization for Efficient Training of Deep Neural Networks
S Wu, G Li, L Deng, L Liu, D Wu, Y Xie, L Shi
IEEE transactions on neural networks and learning systems 30 (7), 2043-2051, 2018
Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity
J Yin, F Zeng, Q Wan, F Li, Y Sun, Y Hu, J Liu, G Li, F Pan
Advanced Functional Materials 28 (19), 1706927, 2018
Going deeper with directly-trained larger spiking neural networks
H Zheng, Y Wu, L Deng, Y Hu, G Li
Proceedings of the AAAI Conference on Artificial Intelligence 35 (12), 11062 …, 2021
Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering
J Huang, W Wang, C Wen, G Li
IEEE Transactions on Automatic Control 65 (1), 318-324, 2019
Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform
MT Sadiq, X Yu, Z Yuan, Z Fan, AU Rehman, G Li, G Xiao
IEEE access 7, 127678-127692, 2019
Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces
MT Sadiq, X Yu, Z Yuan, F Zeming, AU Rehman, I Ullah, G Li, G Xiao
IEEE access 7, 171431-171451, 2019
Truly Concomitant and Independently Expressed Short‐ and Long‐Term Plasticity in a Bi2O2Se‐Based Three‐Terminal Memristor
Z Zhang, T Li, Y Wu, Y Jia, C Tan, X Xu, G Wang, J Lv, W Zhang, Y He, ...
Advanced Materials 31 (3), 1805769, 2019
Smooth control design for adaptive leader-following consensus control of a class of high-order nonlinear systems with time-varying reference
J Huang, YD Song, W Wang, C Wen, G Li
Automatica 83, 361-367, 2017
Enabling an integrated rate-temporal learning scheme on memristor
W He, K Huang, N Ning, K Ramanathan, G Li, Y Jiang, JY Sze, L Shi, ...
Scientific reports 4 (1), 4755, 2014
Training high-performance and large-scale deep neural networks with full 8-bit integers
Y Yang, L Deng, S Wu, T Yan, Y Xie, G Li
Neural Networks 125, 70-82, 2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20