Madmom: A new python audio and music signal processing library S Böck, F Korzeniowski, J Schlüter, F Krebs, G Widmer Proceedings of the 24th ACM international conference on Multimedia, 1174-1178, 2016 | 326 | 2016 |
On the potential of simple framewise approaches to piano transcription R Kelz, M Dorfer, F Korzeniowski, S Böck, A Arzt, G Widmer arXiv preprint arXiv:1612.05153, 2016 | 166 | 2016 |
Feature Learning for Chord Recognition: The Deep Chroma Extractor F Korzeniowski, G Widmer Proceedings of the International Society for Music Information Retrieval …, 2016 | 139 | 2016 |
A Fully Convolutional Deep Auditory Model for Musical Chord Recognition F Korzeniowski, G Widmer IEEE 26th International Workshop on Machine Learning for Signal Processing …, 2016 | 112 | 2016 |
End-to-end musical key estimation using a convolutional neural network F Korzeniowski, G Widmer 2017 25th European Signal Processing Conference (EUSIPCO), 966-970, 2017 | 64 | 2017 |
End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss M Dorfer, J Schlüter, A Vall, F Korzeniowski, G Widmer International Journal of Multimedia Information Retrieval 7, 117-128, 2018 | 56 | 2018 |
Genre-agnostic key classification with convolutional neural networks F Korzeniowski, G Widmer arXiv preprint arXiv:1808.05340, 2018 | 42 | 2018 |
Supervised and unsupervised learning of audio representations for music understanding MC McCallum, F Korzeniowski, S Oramas, F Gouyon, AF Ehmann arXiv preprint arXiv:2210.03799, 2022 | 35 | 2022 |
Improved chord recognition by combining duration and harmonic language models F Korzeniowski, G Widmer arXiv preprint arXiv:1808.05335, 2018 | 33 | 2018 |
On the futility of learning complex frame-level language models for chord recognition F Korzeniowski, G Widmer arXiv preprint arXiv:1702.00178, 2017 | 33 | 2017 |
Classifying short acoustic scenes with I-vectors and CNNs: Challenges and optimisations for the 2017 DCASE ASC task B Lehner, H Eghbal-Zadeh, M Dorfer, F Korzeniowski, K Koutini, ... DCASE2017 Challenge, 2017 | 31 | 2017 |
Probabilistic Extraction of Beat Positions from a Beat Activation Function. F Korzeniowski, S Böck, G Widmer Proceedings of the International Society for Music Information Retrieval …, 2014 | 24 | 2014 |
Moisesdb: A dataset for source separation beyond 4-stems I Pereira, F Araújo, F Korzeniowski, R Vogl arXiv preprint arXiv:2307.15913, 2023 | 22 | 2023 |
A large-scale study of language models for chord prediction F Korzeniowski, DRW Sears, G Widmer 2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018 | 20 | 2018 |
Mood classification using listening data F Korzeniowski, O Nieto, M McCallum, M Won, S Oramas, E Schmidt arXiv preprint arXiv:2010.11512, 2020 | 17 | 2020 |
Artist similarity with graph neural networks F Korzeniowski, S Oramas, F Gouyon arXiv preprint arXiv:2107.14541, 2021 | 16 | 2021 |
Tracking Rests and Tempo Changes: Improved Score Following with Particle Filters F Korzeniowski, F Krebs, A Arzt, G Widmer Proceedings of the International Computer Music Conference (ICMC), 2013 | 16 | 2013 |
Unsupervised learning and refinement of rhythmic patterns for beat and downbeat tracking F Krebs, F Korzeniowski, M Grachten, G Widmer Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), 611-615, 2014 | 13 | 2014 |
Combining high productivity and high performance in image processing using Single Assignment C on multi-core CPUs and many-core GPUs V Wieser, C Grelck, P Haslinger, J Guo, F Korzeniowski, R Bernecky, ... Journal of Electronic Imaging 21 (2), 021116-021116, 2012 | 13 | 2012 |
Automatic chord recognition with higher-order harmonic language modelling F Korzeniowski, G Widnaer 2018 26th European Signal Processing Conference (EUSIPCO), 1900-1904, 2018 | 9 | 2018 |