Seguir
Cheng Mao
Cheng Mao
Dirección de correo verificada de math.gatech.edu - Página principal
Título
Citado por
Citado por
Año
Optimal rates of statistical seriation
N Flammarion, C Mao, P Rigollet
732019
Spectral graph matching and regularized quadratic relaxations: Algorithm and theory
Z Fan, C Mao, Y Wu, J Xu
International conference on machine learning, 2985-2995, 2020
522020
Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: Cone times
E Gwynne, C Mao, X Sun
49*2019
Minimax rates and efficient algorithms for noisy sorting
C Mao, J Weed, P Rigollet
Algorithmic Learning Theory, 821-847, 2018
492018
Spectral graph matching and regularized quadratic relaxations II: Erdős-Rényi graphs and universality
Z Fan, C Mao, Y Wu, J Xu
Foundations of Computational Mathematics 23 (5), 1567-1617, 2023
482023
Exact matching of random graphs with constant correlation
C Mao, M Rudelson, K Tikhomirov
Probability Theory and Related Fields 186 (1), 327-389, 2023
442023
Worst-case versus average-case design for estimation from partial pairwise comparisons
A Pananjady, C Mao, V Muthukumar, MJ Wainwright, TA Courtade
The Annals of Statistics 48 (2), 1072-1097, 2020
44*2020
Random graph matching at Otter’s threshold via counting chandeliers
C Mao, Y Wu, J Xu, SH Yu
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 1345-1356, 2023
362023
Spectral graph matching and regularized quadratic relaxations I algorithm and Gaussian analysis
Z Fan, C Mao, Y Wu, J Xu
Foundations of Computational Mathematics 23 (5), 1511-1565, 2023
34*2023
Towards optimal estimation of bivariate isotonic matrices with unknown permutations
C Mao, A Pananjady, MJ Wainwright
The Annals of Statistics 48 (6), 3183-3205, 2020
252020
Random graph matching with improved noise robustness
C Mao, M Rudelson, K Tikhomirov
Conference on Learning Theory, 3296-3329, 2021
242021
Optimal spectral recovery of a planted vector in a subspace
C Mao, AS Wein
arXiv preprint arXiv:2105.15081, 2021
232021
Testing network correlation efficiently via counting trees
C Mao, Y Wu, J Xu, SH Yu
arXiv preprint arXiv:2110.11816, 2021
192021
Breaking the Barrier: Faster Rates for Permutation-based Models in Polynomial Time
C Mao, A Pananjady, MJ Wainwright
Conference On Learning Theory, 2037-2042, 2018
152018
Detection-recovery gap for planted dense cycles
C Mao, AS Wein, S Zhang
The Thirty Sixth Annual Conference on Learning Theory, 2440-2481, 2023
112023
Estimation of Monge matrices
JC Hütter, C Mao, P Rigollet, E Robeva
112020
Detection of dense subhypergraphs by low-degree polynomials
A Dhawan, C Mao, AS Wein
arXiv preprint arXiv:2304.08135, 2023
72023
Learning mixtures of permutations: Groups of pairwise comparisons and combinatorial method of moments
C Mao, Y Wu
The Annals of Statistics 50 (4), 2231-2255, 2022
72022
Information-Theoretic Thresholds for Planted Dense Cycles
C Mao, AS Wein, S Zhang
arXiv preprint arXiv:2402.00305, 2024
32024
Optimal rates for estimation of two-dimensional totally positive distributions
JC Hütter, C Mao, P Rigollet, E Robeva
Electronic Journal of Statistics 14 (2), 2600-2652, 2020
32020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20