Seguir
Tom Rainforth
Tom Rainforth
Associate Professor, University of Oxford
Dirección de correo verificada de stats.ox.ac.uk - Página principal
Título
Citado por
Citado por
Año
Disentangling Disentanglement in Variational Autoencoders
E Mathieu, T Rainforth, N Siddharth, YW Teh
International Conference on Machine Learning, 4402-4412, 2019
3522019
On the fairness of disentangled representations
F Locatello, G Abbati, T Rainforth, S Bauer, B Schölkopf, O Bachem
Advances in Neural Information Processing Systems, 2019
2532019
Tighter Variational Bounds are Not Necessarily Better
T Rainforth, AR Kosiorek, TA Le, CJ Maddison, M Igl, F Wood, YW Teh
Proceedings of the 35rd International Conference on Machine Learning 80 …, 2018
2342018
Auto-Encoding Sequential Monte Carlo
TA Le, M Igl, T Rainforth, T Jin, F Wood
International Conference on Learning Representations, 2018
1952018
On Nesting Monte Carlo Estimators
T Rainforth, R Cornish, H Yang, A Warrington, F Wood
Proceedings of the 35th International Conference on Machine Learning 80 …, 2018
178*2018
Variational Bayesian optimal experimental design
A Foster, M Jankowiak, E Bingham, P Horsfall, YW Teh, T Rainforth, ...
Advances in Neural Information Processing Systems 32, 2019
1642019
Self-attention between datapoints: Going beyond individual input-output pairs in deep learning
J Kossen, N Band, C Lyle, AN Gomez, T Rainforth, Y Gal
Advances in Neural Information Processing Systems 34, 28742-28756, 2021
1422021
A Continuous Time Framework for Discrete Denoising Models
A Campbell, J Benton, V De Bortoli, T Rainforth, G Deligiannidis, ...
Advances in Neural Information Processing Systems, 2022
1412022
Canonical correlation forests
T Rainforth, F Wood
arXiv preprint arXiv:1507.05444, 2015
1212015
On statistical bias in active learning: How and when to fix it
S Farquhar, Y Gal, T Rainforth
International Conference on Learning Representations, 2021
1042021
A Statistical Approach to Assessing Neural Network Robustness
S Webb, T Rainforth, YW Teh, MP Kumar
International Conference on Learning Representations, 2019
1042019
Deep adaptive design: Amortizing sequential bayesian experimental design
A Foster, DR Ivanova, I Malik, T Rainforth
International conference on machine learning, 3384-3395, 2021
962021
Modern Bayesian experimental design
T Rainforth, A Foster, DR Ivanova, F Bickford Smith
Statistical Science 39 (1), 100-114, 2024
932024
Selfcheck: Using LLMs to zero-shot check their own step-by-step reasoning
N Miao, YW Teh, T Rainforth
International Conference on Learning Representations, 2024
892024
A unified stochastic gradient approach to designing bayesian-optimal experiments
A Foster, M Jankowiak, M O’Meara, YW Teh, T Rainforth
International Conference on Artificial Intelligence and Statistics, 2959-2969, 2020
812020
Generative flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design
A Campbell, J Yim, R Barzilay, T Rainforth, T Jaakkola
International Conference on Machine Learning, 2024
692024
Active testing: Sample-efficient model evaluation
J Kossen, S Farquhar, Y Gal, T Rainforth
International Conference on Machine Learning, 5753-5763, 2021
632021
Implicit deep adaptive design: Policy-based experimental design without likelihoods
DR Ivanova, A Foster, S Kleinegesse, MU Gutmann, T Rainforth
Advances in neural information processing systems 34, 25785-25798, 2021
602021
Capturing Label Characteristics in VAEs
T Joy, SM Schmon, PHS Torr, N Siddharth, T Rainforth
International Conference on Learning Representations, 2021
59*2021
Automating inference, learning, and design using probabilistic programming
TWG Rainforth
University of Oxford, 2017
572017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20