Shelley Minteer
Citado por
Citado por
Catalysts for nitrogen reduction to ammonia
SL Foster, SIP Bakovic, RD Duda, S Maheshwari, RD Milton, SD Minteer, ...
Nature Catalysis 1 (7), 490-500, 2018
Electricity generation from artificial wastewater using an upflow microbial fuel cell
Z He, SD Minteer, LT Angenent
Environmental science & technology 39 (14), 5262-5267, 2005
An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy
Z He, N Wagner, SD Minteer, LT Angenent
Environmental science & technology 40 (17), 5212-5217, 2006
Enzyme-based biofuel cells
SD Minteer, BY Liaw, MJ Cooney
Current opinion in biotechnology 18 (3), 228-234, 2007
Substrate channelling as an approach to cascade reactions
I Wheeldon, SD Minteer, S Banta, SC Barton, P Atanassov, M Sigman
Nature chemistry 8 (4), 299-309, 2016
Enzymatic biofuel cells: 30 years of critical advancements
M Rasmussen, S Abdellaoui, SD Minteer
Biosensors and Bioelectronics 76, 91-102, 2016
Enzyme catalysed biofuel cells
MJ Cooney, V Svoboda, C Lau, G Martin, SD Minteer
Energy & Environmental Science 1 (3), 320-337, 2008
Extended lifetime biofuel cells
MJ Moehlenbrock, SD Minteer
Chemical Society Reviews 37 (6), 1188-1196, 2008
Nanomaterials for bio-functionalized electrodes: recent trends
A Walcarius, SD Minteer, J Wang, Y Lin, A Merkoçi
Journal of Materials Chemistry B 1 (38), 4878-4908, 2013
Using nature’s blueprint to expand catalysis with Earth-abundant metals
RM Bullock, JG Chen, L Gagliardi, PJ Chirik, OK Farha, CH Hendon, ...
Science 369 (6505), eabc3183, 2020
A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms
C Sandford, MA Edwards, KJ Klunder, DP Hickey, M Li, K Barman, ...
Chemical science 10 (26), 6404-6422, 2019
Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry
BK Peters, KX Rodriguez, SH Reisberg, SB Beil, DP Hickey, Y Kawamata, ...
Science 363 (6429), 838-845, 2019
Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes
NL Akers, CM Moore, SD Minteer
Electrochimica Acta 50 (12), 2521-2525, 2005
Recent advances in material science for developing enzyme electrodes
AK Sarma, P Vatsyayan, P Goswami, SD Minteer
Biosensors and Bioelectronics 24 (8), 2313-2322, 2009
Energy storage emerging: A perspective from the Joint Center for Energy Storage Research
L Trahey, FR Brushett, NP Balsara, G Ceder, L Cheng, YM Chiang, ...
Proceedings of the National Academy of Sciences 117 (23), 12550-12557, 2020
Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications
Y Kawamata, JC Vantourout, DP Hickey, P Bai, L Chen, Q Hou, W Qiao, ...
Journal of the American Chemical Society 141 (15), 6392-6402, 2019
Fundamentals, applications, and future directions of bioelectrocatalysis
H Chen, O Simoska, K Lim, M Grattieri, M Yuan, F Dong, YS Lee, ...
Chemical Reviews 120 (23), 12903-12993, 2020
Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides
CM Moore, NL Akers, AD Hill, ZC Johnson, SD Minteer
Biomacromolecules 5 (4), 1241-1247, 2004
Enzyme immobilization in biotechnology
C Spahn, SD Minteer
Recent patents on engineering 2 (3), 195-200, 2008
Bioelectrochemical Haber–Bosch Process: An Ammonia‐Producing H2/N2 Fuel Cell
RD Milton, R Cai, S Abdellaoui, D Leech, AL De Lacey, M Pita, ...
Angewandte Chemie International Edition 56 (10), 2680-2683, 2017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20