Follow
Paul Escapil-Inchauspé
Paul Escapil-Inchauspé
Data Observatory Foundation
Verified email at dataobservatory.net
Title
Cited by
Cited by
Year
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
P Escapil-Inchauspé, GA Ruz
Neurocomputing 561, 126826, 2023
182023
Accelerated Calderón preconditioning for Maxwell transmission problems
A Kleanthous, T Betcke, DP Hewett, P Escapil-Inchauspé, ...
Journal of Computational Physics 458, 111099, 2022
142022
Fast Calderón preconditioning for the electric field integral equation
P Escapil-Inchauspé, C Jerez-Hanckes
IEEE Transactions on Antennas and Propagation 67 (4), 2555-2564, 2019
142019
Helmholtz scattering by random domains: first-order sparse boundary element approximation
P Escapil-Inchauspé, C Jerez-Hanckes
SIAM Journal on Scientific Computing 42 (5), A2561-A2592, 2020
102020
Bi-parametric operator preconditioning
P Escapil-Inchauspé, C Jerez-Hanckes
Computers & Mathematics with Applications 102, 220-232, 2021
72021
Local multiple traces formulation for electromagnetics: Stability and preconditioning for smooth geometries
A Ayala, X Claeys, P Escapil-Inchauspé, C Jerez-Hanckes
Journal of Computational and Applied Mathematics 413, 114356, 2022
62022
Physics-informed neural networks for operator equations with stochastic data
P Escapil-Inchauspé, GA Ruz
arXiv preprint arXiv:2211.10344, 2022
22022
Shape Uncertainty Quantification for Electromagnetic Wave Scattering via First-Order Sparse Boundary Element Approximation
P Escapil-Inchauspé, C Jerez-Hanckes
arXiv preprint arXiv:2308.01457, 2023
12023
Author Correction: h-Analysis and data-parallel physics-informed neural networks
P Escapil‑Inchauspé, GA Ruz
Scientific Reports 14, 2024
2024
h-Analysis and data-parallel physics-informed neural networks
P Escapil-Inchauspé, GA Ruz
Scientific Reports 13 (1), 17562, 2023
2023
High performance preconditioning and perturbation analysis applied to wave propagation problems
P Escapil-Inchauspé
PQDT-Global, 2021
2021
Shape differentiability of Helmholtz scattering problems via explicit shape calculus
P Escapil-Inchauspé, C Jerez-Hanckes
arXiv preprint arXiv:2011.10344, 2020
2020
Physics informed Neural Network for quasistatic fault slip forward and inverse problems
S Cobaise, A Osses, F Ortega-Culaciati, P Escapil-Inchauspé
BOOK OF, 130, 0
PHYSICS INFORMED NEURAL NETWORK FOR QUASISTATIC FAULT SLIP FORWARD AND INVERSE PROBLEMS
SC SALAS, AO ALVARADO, F ORTEGA-CULACIATI, ...
Implementation of local multiple traces formulation for electromagnetic scattering by complex objects
T Betcke, P Escapil-Inchauspé, C Jerez-Hanckes, M Scroggs
BOOK OF, 225, 0
Quantifying Atomic Position Uncertainty in Molecular Electrostatics with Poisson-Boltzmann and Boundary Elements
P Escapil-Inchauspé, MG DÍAZ, C Jerez-Hanckes, CD Cooper
BOOK OF, 229, 0
SANTIAGO NUMERICO III
P Escapil-Inchauspé, C Jerez-Hanckes
WAVE DIFFRACTION BY RANDOM SURFACES: UNCERTAINTY QUANTIFICATION VIA SPARSE TENSOR BOUNDARY ELEMENTS AND SHAPE CALCULUS
P ESCAPIL-INCHAUSPÉ, C JEREZ-HANCKES
The system can't perform the operation now. Try again later.
Articles 1–18