Seguir
Cheolmin Kim
Cheolmin Kim
Dirección de correo verificada de u.northwestern.edu - Página principal
Título
Citado por
Citado por
Año
A simple and fast algorithm for L1-norm kernel PCA
C Kim, D Klabjan
IEEE transactions on pattern analysis and machine intelligence 42 (8), 1842-1855, 2019
742019
Graph convolutional neural networks for optimal load shedding under line contingency
C Kim, K Kim, P Balaprakash, M Anitescu
2019 ieee power & energy society general meeting (pesgm), 1-5, 2019
632019
Stochastic variance-reduced algorithms for PCA with arbitrary mini-batch sizes
C Kim, D Klabjan
International Conference on Artificial Intelligence and Statistics, 4302-4312, 2020
82020
Optimal expediting policies for an inventory system with stochastic lead time under radio frequency identification
C Kim, D Klabjan, D Simchi-Levi
Working paper. Massachusetts Institute of Technology, 2007
52007
Stochastic variance-reduced heavy ball power iteration
C Kim, D Klabjan
arXiv preprint arXiv:1901.08179, 2019
32019
Solution approaches to linear fractional programming and its stochastic generalizations using second order cone approximations
C Kim, S Mehrotra
SIAM Journal on Optimization 31 (1), 945-971, 2021
22021
Scale invariant power iteration
C Kim, Y Kim, D Klabjan
arXiv preprint arXiv:1905.09882, 2019
22019
An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation
S Dey, C Kim, S Mehrotra
European Journal of Operational Research 315 (3), 980-990, 2024
2024
Stochastic Scale Invariant Power Iteration for KL-divergence Nonnegative Matrix Factorization
C Kim, Y Kim, D Klabjan
arXiv preprint arXiv:2304.11268, 2023
2023
Scale invariant power iteration
C Kim, Y Kim, D Klabjan
Journal of Machine Learning Research 24 (321), 1-47, 2023
2023
Optimization Methods for Scale Invariant Problems in Machine Learning
C Kim
Northwestern University, 2020
2020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–11