Seguir
Frank Wood
Título
Citado por
Citado por
Año
Learning disentangled representations with semi-supervised deep generative models
B Paige, JW van de Meent, A Desmaison, N Goodman, P Kohli, F Wood, ...
Advances in neural information processing systems 30, 2017
3812017
A new approach to probabilistic programming inference
F Wood, JW Meent, V Mansinghka
Artificial intelligence and statistics, 1024-1032, 2014
3792014
Deep variational reinforcement learning for POMDPs
M Igl, L Zintgraf, TA Le, F Wood, S Whiteson
International Conference on Machine Learning, 2117-2126, 2018
2712018
Diagnosis code assignment: models and evaluation metrics
A Perotte, R Pivovarov, K Natarajan, N Weiskopf, F Wood, N Elhadad
Journal of the American Medical Informatics Association 21 (2), 231-237, 2014
2572014
On the variability of manual spike sorting
F Wood, MJ Black, C Vargas-Irwin, M Fellows, JP Donoghue
IEEE Transactions on Biomedical Engineering 51 (6), 912-918, 2004
2472004
Online learning rate adaptation with hypergradient descent
AG Baydin, R Cornish, DM Rubio, M Schmidt, F Wood
arXiv preprint arXiv:1703.04782, 2017
2352017
Improved few-shot visual classification
P Bateni, R Goyal, V Masrani, F Wood, L Sigal
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2072020
Tighter variational bounds are not necessarily better
T Rainforth, A Kosiorek, TA Le, C Maddison, M Igl, F Wood, YW Teh
International Conference on Machine Learning, 4277-4285, 2018
2052018
An introduction to probabilistic programming
JW van de Meent, B Paige, H Yang, F Wood
arXiv preprint arXiv:1809.10756, 2018
1842018
Hierarchically supervised latent Dirichlet allocation
A Perotte, F Wood, N Elhadad, N Bartlett
Advances in neural information processing systems 24, 2011
1712011
Auto-encoding sequential monte carlo
TA Le, M Igl, T Rainforth, T Jin, F Wood
arXiv preprint arXiv:1705.10306, 2017
1682017
A nonparametric Bayesian alternative to spike sorting
F Wood, MJ Black
Journal of neuroscience methods 173 (1), 1-12, 2008
1602008
Inference compilation and universal probabilistic programming
TA Le, AG Baydin, F Wood
Artificial Intelligence and Statistics, 1338-1348, 2017
1582017
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S Staton, H Yang, F Wood, C Heunen, O Kammar
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer …, 2016
1572016
A stochastic memoizer for sequence data
F Wood, C Archambeau, J Gasthaus, L James, YW Teh
Proceedings of the 26th annual international conference on machine learning …, 2009
1352009
Design and implementation of probabilistic programming language anglican
D Tolpin, JW van de Meent, H Yang, F Wood
Proceedings of the 28th Symposium on the Implementation and Application of …, 2016
1322016
Using synthetic data to train neural networks is model-based reasoning
TA Le, AG Baydin, R Zinkov, F Wood
2017 international joint conference on neural networks (IJCNN), 3514-3521, 2017
1242017
On nesting monte carlo estimators
T Rainforth, R Cornish, H Yang, A Warrington, F Wood
International Conference on Machine Learning, 4267-4276, 2018
1172018
A non-parametric Bayesian method for inferring hidden causes
F Wood, T Griffiths, Z Ghahramani
arXiv preprint arXiv:1206.6865, 2012
1102012
Inference networks for sequential Monte Carlo in graphical models
B Paige, F Wood
International Conference on Machine Learning, 3040-3049, 2016
1082016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20