Seguir
Shi Feng
Shi Feng
Dirección de correo verificada de gwu.edu - Página principal
Título
Citado por
Citado por
Año
Calibrate before use: Improving few-shot performance of language models
Z Zhao, E Wallace, S Feng, D Klein, S Singh
ICML 2021, 2021
11162021
Universal adversarial triggers for attacking and analyzing NLP
E Wallace, S Feng, N Kandpal, M Gardner, S Singh
EMNLP 2019, 2019
8402019
Pathologies of Neural Models Make Interpretations Difficult
S Feng, E Wallace, A Grissom II, M Iyyer, P Rodriguez, J Boyd-Graber
EMNLP 2018, 2018
3612018
Trick me if you can: Human-in-the-loop generation of adversarial examples for question answering
E Wallace, P Rodriguez, S Feng, I Yamada, J Boyd-Graber
TACL 2019, 2019
1732019
Concealed data poisoning attacks on NLP models
E Wallace, TZ Zhao, S Feng, S Singh
NAACL 2021, 2020
165*2020
What can AI do for me? evaluating machine learning interpretations in cooperative play
S Feng, J Boyd-Graber
IUI 2019, 2019
1502019
Active example selection for in-context learning
Y Zhang, S Feng, C Tan
EMNLP 2022, 2022
1252022
Knowledge-based semantic embedding for machine translation
C Shi, S Liu, S Ren, S Feng, M Li, M Zhou, X Sun, H Wang
Proceedings of the 54th Annual Meeting of the Association for Computational …, 2016
942016
Improving Attention Modeling with Implicit Distortion and Fertility for Machine Translation
S Feng, S Liu, N Yang, M Li, M Zhou, KQ Zhu
COLING, 2016
74*2016
Interpreting neural networks with nearest neighbors
E Wallace, S Feng, J Boyd-Graber
BlackboxNLP @ EMNLP 2018, 2018
612018
Understanding impacts of high-order loss approximations and features in deep learning interpretation
S Singla, E Wallace, S Feng, S Feizi
ICML 2019, 2019
572019
Misleading failures of partial-input baselines
S Feng, E Wallace, J Boyd-Graber
ACL 2019, 2019
412019
Quizbowl: The case for incremental question answering
P Rodriguez, S Feng, M Iyyer, H He, J Boyd-Graber
arXiv preprint arXiv:1904.04792, 2019
402019
LLM evaluators recognize and favor their own generations
A Panickssery, SR Bowman, S Feng
NeurIPS 2024, 2024
322024
Measuring inductive biases of in-context learning with underspecified demonstrations
C Si, D Friedman, N Joshi, S Feng, D Chen, H He
ACL 2023, 2023
242023
Machine explanations and human understanding
C Chen, S Feng, A Sharma, C Tan
TMLR 2023, 2022
222022
Human-centered evaluation of explanations
J Boyd-Graber, S Carton, S Feng, QV Liao, T Lombrozo, A Smith-Renner, ...
NAACL 2022 Tutorial, 2022
182022
Large Language Models Help Humans Verify Truthfulness--Except When They Are Convincingly Wrong
C Si, N Goyal, ST Wu, C Zhao, S Feng, H Daumé III, J Boyd-Graber
NAACL 2024, 2023
142023
Human-computer question answering: The case for quizbowl
J Boyd-Graber, S Feng, P Rodriguez
The NIPS'17 Competition: Building Intelligent Systems, 169-180, 2018
122018
How pre-trained word representations capture commonsense physical comparisons
P Goel, S Feng, J Boyd-Graber
Proceedings of the First Workshop on Commonsense Inference in Natural …, 2019
82019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20