Seguir
Rishabh Agarwal
Rishabh Agarwal
Staff Research Scientist, Google DeepMind. Adjunct Prof, McGill
Dirección de correo verificada de google.com - Página principal
Título
Citado por
Citado por
Año
An Optimistic Perspective on Offline Reinforcement Learning
R Agarwal, D Schuurmans, M Norouzi
International Conference on Machine Learning (ICML), 2020
718*2020
Deep Reinforcement Learning at the Edge of the Statistical Precipice
R Agarwal, M Schwarzer, PS Castro, A Courville, MG Bellemare
Neural Information Processing Systems (NeurIPS), 𝗢𝘂𝘁𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 𝗣𝗮𝗽𝗲𝗿 𝗔𝘄𝗮𝗿𝗱, 2021
7082021
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, *Core Contributor, 2024
7012024
Neural additive models: Interpretable machine learning with neural nets
R Agarwal, L Melnick, Frosst, Zhang, Lengerich, R Caruana, GE Hinton
Neural Information Processing Systems (NeurIPS), 𝗦𝗽𝗼𝘁𝗹𝗶𝗴𝗵𝘁, 2021
5052021
Revisiting Fundamentals of Experience Replay
W Fedus*, P Ramachandran*, R Agarwal, Y Bengio, H Larochelle, ...
International Conference on Machine Learning (ICML), 2020
3202020
RL Unplugged: A Collection of Benchmarks for Offline Reinforcement Learning
C Gulcehre, Z Wang, A Novikov, T Paine, S Gómez, K Zolna, R Agarwal, ...
Advances in Neural Information Processing Systems (NeurIPS), 2020
216*2020
Gemma 2: Improving open language models at a practical size
G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ...
arXiv preprint arXiv:2408.00118, 2024
2082024
Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning
R Agarwal, MC Machado, PS Castro, MG Bellemare
International Conference on Learning Representations (ICLR), 𝗦𝗽𝗼𝘁𝗹𝗶𝗴𝗵𝘁, 2021
2082021
On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes
R Agarwal*, N Vieillard*, Y Zhou, P Stanczyk, S Ramos, M Geist, ...
International Conference on Learning Representations (ICLR), 2024
114*2024
Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning
A Kumar*, R Agarwal*, D Ghosh, S Levine
International Conference on Learning Representations (ICLR), *equal contribution, 2021
1142021
Learning to Generalize from Sparse and Underspecified Rewards
R Agarwal, C Liang, D Schuurmans, M Norouzi
International Conference on Machine Learning (ICML), 2019
1122019
Many-shot in-context learning
R Agarwal, A Singh, LM Zhang, B Bohnet, S Chan, A Anand, Z Abbas, ...
Neural Information Processing Systems (NeurIPS), 𝗦𝗽𝗼𝘁𝗹𝗶𝗴𝗵𝘁, 2024
94*2024
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
G Sokar, R Agarwal, PS Castro, U Evci
International Conference on Machine Learning (ICML), 𝐎𝐫𝐚𝐥, 2023
782023
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
R Agarwal, M Schwarzer, PS Castro, A Courville, MG Bellemare
Neural Information Processing Systems (NeurIPS), 2022
78*2022
Bigger, Better, Faster: Human-level Atari with human-level efficiency
M Schwarzer, JO Ceron, Courville, Bellemare, PS Castro*, R Agarwal*
International Conference on Machine Learning (ICML), 2023
772023
Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research
C Gulino, J Fu, W Luo, G Tucker, E Bronstein, Y Lu, J Harb, X Pan, ...
Neural Information Processing Systems, NeurIPS, 2023
732023
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
A Singh*, JD Co-Reyes*, R Agarwal*, A Anand, P Patil, PJ Liu, J Harrison, ...
Transactions on Machine Learning Research (TMLR), 2024
662024
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
A Kumar, R Agarwal, T Ma, A Courville, G Tucker, S Levine
International Conference on Learning Representations (ICLR), 𝗦𝗽𝗼𝘁𝗹𝗶𝗴𝗵𝘁, 2022
622022
Distillspec: Improving speculative decoding via knowledge distillation
Y Zhou, K Lyu, AS Rawat, AK Menon, ..., S Kumar, JF Kagy, R Agarwal
International Conference on Learning Representations (ICLR), 2024
522024
Offline Q-Learning on Diverse Multi-Task Data Both Scales And Generalizes
A Kumar, R Agarwal, X Geng, G Tucker, S Levine
International Conference on Learning Representations (ICLR), 𝐍𝐨𝐭𝐚𝐛𝐥𝐞-𝐭𝐨𝐩-𝟓%, 2023
462023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20