David M. Zoltowski
David M. Zoltowski
Dirección de correo verificada de - Página principal
Citado por
Citado por
A tensor decomposition-based approach for detecting dynamic network states from EEG
AG Mahyari, DM Zoltowski, EM Bernat, S Aviyente
IEEE Transactions on Biomedical Engineering 64 (1), 225-237, 2016
Discrete stepping and nonlinear ramping dynamics underlie spiking responses of LIP neurons during decision-making
DM Zoltowski, KW Latimer, JL Yates, AC Huk, JW Pillow
Neuron 102 (6), 1249-1258. e10, 2019
A general recurrent state space framework for modeling neural dynamics during decision-making
DM Zoltowski, JW Pillow, SW Linderman
Proceedings of the International Conference on Machine Learning (ICML), 2983 …, 2020
Scaling the Poisson GLM to massive neural datasets through polynomial approximations
DM Zoltowski, JW Pillow
Advances in Neural Information Processing Systems, 3521-3531, 2018
Sparsity-promoting optimal control of spatially-invariant systems
DM Zoltowski, N Dhingra, F Lin, MR Jovanović
2014 American Control Conference, 1255-1260, 2014
Neural Latents Benchmark'21: Evaluating latent variable models of neural population activity
F Pei, J Ye, D Zoltowski, A Wu, RH Chowdhury, H Sohn, JE O'Doherty, ...
arXiv preprint arXiv:2109.04463, 2021
Modeling statistical dependencies in multi-region spike train data
SL Keeley, DM Zoltowski, MC Aoi, JW Pillow
Current opinion in neurobiology 65, 194-202, 2020
Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations
S Keeley, D Zoltowski, Y Yu, S Smith, J Pillow
International Conference on Machine Learning, 5177-5186, 2020
A graph theoretic approach to dynamic functional connectivity tracking and network state identification
DM Zoltowski, EM Bernat, S Aviyente
2014 36th Annual International Conference of the IEEE Engineering in …, 2014
Unifying and generalizing models of neural dynamics during decision-making
DM Zoltowski, JW Pillow, SW Linderman
arXiv preprint arXiv:2001.04571, 2020
SSM: Bayesian learning and inference for state space models
S Linderman, B Antin, D Zoltowski, J Glaser
Low-rank tensor decomposition based dynamic network tracking
DM Zoltowski, S Aviyente
2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP …, 2014
Slice Sampling Reparameterization Gradients
D Zoltowski, D Cai, RP Adams
Advances in Neural Information Processing Systems 34, 23532-23544, 2021
Probabilistic methods for modeling decision-making dynamics and identifying structure in neural datasets
D Zoltowski
Princeton, NJ: Princeton University, 2022
Modeling communication and switching nonlinear dynamics in multi-region neural activity
O Karniol-Tambour, DM Zoltowski, EM Diamanti, L Pinto, DW Tank, ...
bioRxiv, 2022
DM Zoltowski, N Dhingra, F Lin, MR Jovanović
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–16