Michael D. Ekstrand
Michael D. Ekstrand
Assistant Professor of Computer Science, Boise State University
Dirección de correo verificada de boisestate.edu - Página principal
Título
Citado por
Citado por
Año
Collaborative filtering recommender systems
MD Ekstrand, JT Riedl, JA Konstan
Foundations and Trends in Human-Computer Interaction 4 (2), 81-173, 2011
12982011
Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit
MD Ekstrand, M Ludwig, JA Konstan, JT Riedl
Proceedings of the fifth ACM conference on Recommender systems, 133-140, 2011
2022011
User perception of differences in recommender algorithms
MD Ekstrand, FM Harper, MC Willemsen, JA Konstan
Proceedings of the 8th ACM Conference on Recommender systems, 161-168, 2014
1802014
Automatically building research reading lists
MD Ekstrand, P Kannan, JA Stemper, JT Butler, JA Konstan, JT Riedl
Proceedings of the fourth ACM conference on Recommender systems, 159-166, 2010
1112010
All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
MD Ekstrand, M Tian, IM Azpiazu, JD Ekstrand, O Anuyah, D McNeill, ...
Conference on Fairness, Accountability and Transparency, 172-186, 2018
922018
Teaching recommender systems at large scale: evaluation and lessons learned from a hybrid MOOC
JA Konstan, JD Walker, DC Brooks, K Brown, MD Ekstrand
ACM Transactions on Computer-Human Interaction (TOCHI) 22 (2), 1-23, 2015
922015
Letting users choose recommender algorithms: An experimental study
MD Ekstrand, D Kluver, FM Harper, JA Konstan
Proceedings of the 9th ACM Conference on Recommender Systems, 11-18, 2015
902015
Rating-based collaborative filtering: algorithms and evaluation
D Kluver, MD Ekstrand, JA Konstan
Social Information Access, 344-390, 2018
792018
Exploring author gender in book rating and recommendation
MD Ekstrand, M Tian, MRI Kazi, H Mehrpouyan, D Kluver
Proceedings of the 12th ACM Conference on Recommender Systems, 242-250, 2018
722018
When recommenders fail: predicting recommender failure for algorithm selection and combination
M Ekstrand, J Riedl
Proceedings of the sixth ACM conference on Recommender systems, 233-236, 2012
652012
Behaviorism is not enough: Better recommendations through listening to users
MD Ekstrand, MC Willemsen
Proceedings of the 10th ACM Conference on Recommender Systems, 221-224, 2016
612016
Rating support interfaces to improve user experience and recommender accuracy
TT Nguyen, D Kluver, TY Wang, PM Hui, MD Ekstrand, MC Willemsen, ...
Proceedings of the 7th ACM conference on Recommender systems, 149-156, 2013
472013
Searching for software learning resources using application context
M Ekstrand, W Li, T Grossman, J Matejka, G Fitzmaurice
Proceedings of the 24th annual ACM symposium on User interface software and …, 2011
472011
Privacy for All: Ensuring Fair and Equitable Privacy Protections
MD Ekstrand, R Joshaghani, H Mehrpouyan
Conference on Fairness, Accountability and Transparency, 35-47, 2018
452018
LensKit: a modular recommender framework
MD Ekstrand, M Ludwig, J Kolb, JT Riedl
Proceedings of the fifth ACM conference on Recommender systems, 349-350, 2011
422011
How many bits per rating?
D Kluver, TT Nguyen, M Ekstrand, S Sen, J Riedl
Proceedings of the sixth ACM conference on Recommender systems, 99-106, 2012
412012
Evaluating stochastic rankings with expected exposure
F Diaz, B Mitra, MD Ekstrand, AJ Biega, B Carterette
Proceedings of the 29th ACM International Conference on Information …, 2020
392020
LensKit for Python: Next-Generation Software for Recommender Systems Experiments
MD Ekstrand
Proceedings of the 29th ACM International Conference on Information …, 2020
35*2020
rv you're dumb: identifying discarded work in Wiki article history
MD Ekstrand, JT Riedl
Proceedings of the 5th international Symposium on Wikis and Open …, 2009
352009
Fairness and Discrimination in Retrieval and Recommendation
MD Ekstrand, R Burke, F Diaz
Proceedings of the 42nd International ACM SIGIR Conference on Research and …, 2019
212019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20