Seguir
Matthias Seibert
Matthias Seibert
Doctoral Candidate at the Professorship for Geometric Optimization and Machine Learning at TUM
Dirección de correo verificada de tum.de
Título
Citado por
Citado por
Año
Separable dictionary learning
S Hawe, M Seibert, M Kleinsteuber
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2013
1462013
Sample complexity of dictionary learning and other matrix factorizations
R Gribonval, R Jenatton, F Bach, M Kleinsteuber, M Seibert
IEEE Transactions on Information Theory 61 (6), 3469-3486, 2015
1022015
Learning co-sparse analysis operators with separable structures
M Seibert, J Wörmann, R Gribonval, M Kleinsteuber
IEEE Transactions on Signal Processing 64 (1), 120-130, 2015
212015
Properties of the BFGS method on Riemannian manifolds
M Seibert, M Kleinsteuber, K Hüper
Mathematical System Theory C Festschrift in Honor of Uwe Helmke on the …, 2013
122013
Separable cosparse analysis operator learning
M Seibert, J Wörmann, R Gribonval, M Kleinsteuber
2014 22nd European Signal Processing Conference (EUSIPCO), 770-774, 2014
112014
Sample Complexity of Representation Learning for Sparse and Related Data Models
M Seibert
Technische Universität München, 2019
32019
On the sample complexity of sparse dictionary learning
M Seibert, M Kleinsteuber, R Gribonval, R Jenatton, F Bach
2014 IEEE Workshop on Statistical Signal Processing (SSP), 244-247, 2014
32014
On the Sample Complexity of Analysis Operator Learning
M Seibert, M Kleinsteuber
Proceedings of SPARS 2015, 2015
2015
Apprentissage de dictionnaire pour les représentations parcimonieuses
R Gribonval, R Jenatton, F Bach, M Kleinsteuber, M Seibert
46e Journées de Statistique, 2014
2014
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–9