Seguir
Brian L Trippe
Brian L Trippe
Assistant Professor of Statistics, Stanford University
Dirección de correo verificada de stanford.edu - Página principal
Título
Citado por
Citado por
Año
De novo design of protein structure and function with RFdiffusion
JL Watson, D Juergens, NR Bennett, BL Trippe, J Yim, HE Eisenach, ...
Nature 620 (7976), 1089-1100, 2023
964*2023
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem
BL Trippe, J Yim, D Tischer, D Baker, T Broderick, R Barzilay, T Jaakkola
arXiv preprint arXiv:2206.04119, 2022
2292022
Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases
EM Weeks, JC Ulirsch, NY Cheng, BL Trippe, RS Fine, J Miao, ...
Nature genetics 55 (8), 1267-1276, 2023
1882023
SE (3) diffusion model with application to protein backbone generation
J Yim, BL Trippe, V De Bortoli, E Mathieu, A Doucet, R Barzilay, ...
arXiv preprint arXiv:2302.02277, 2023
1652023
Conditional density estimation with bayesian normalising flows
BL Trippe, RE Turner
arXiv preprint arXiv:1802.04908, 2018
762018
Overpruning in variational bayesian neural networks
B Trippe, R Turner
arXiv preprint arXiv:1801.06230, 2018
542018
Practical and asymptotically exact conditional sampling in diffusion models
L Wu, B Trippe, C Naesseth, D Blei, JP Cunningham
Advances in Neural Information Processing Systems 36, 2024
432024
The kernel interaction trick: Fast Bayesian discovery of pairwise interactions in high dimensions
R Agrawal, B Trippe, J Huggins, T Broderick
International Conference on Machine Learning, 141-150, 2019
302019
Many processors, little time: MCMC for partitions via optimal transport couplings
TD Nguyen, BL Trippe, T Broderick
International Conference on Artificial Intelligence and Statistics, 3483-3514, 2022
16*2022
LR-GLM: High-dimensional Bayesian inference using low-rank data approximations
B Trippe, J Huggins, R Agrawal, T Broderick
International conference on machine learning, 6315-6324, 2019
142019
Randomized gates eliminate bias in sort‐seq assays
BL Trippe, B Huang, EA DeBenedictis, B Coventry, N Bhattacharya, ...
Protein Science 31 (9), e4401, 2022
132022
Inhibition of cell fate repressors secures the differentiation of the touch receptor neurons of Caenorhabditis elegans
C Zheng, FQ Jin, BL Trippe, J Wu, M Chalfie
Development 145 (22), dev168096, 2018
122018
Gaussian processes at the Helm (holtz): A more fluid model for ocean currents
R Berlinghieri, BL Trippe, DR Burt, R Giordano, K Srinivasan, ...
arXiv preprint arXiv:2302.10364, 2023
112023
Neural network for processing aptamer data
MTH Dimon, M Berndl, MA Coram, B Trippe, PF Riley, PC Nelson
US Patent 10,546,650, 2020
72020
Practical and asymptotically exact conditional sampling in diffusion models
BL Trippe, L Wu, CA Naesseth, D Blei, JP Cunningham
ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative …, 2023
42023
For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets
B Trippe, H Finucane, T Broderick
Advances in Neural Information Processing Systems 34, 13471-13484, 2021
32021
Confidently Comparing Estimates with the c-value
BL Trippe, SK Deshpande, T Broderick
Journal of the American Statistical Association 119 (546), 983-994, 2024
22024
K-mer Motif Multinomial Mixtures, a scalable framework for multiple motif discovery
BL Trippe, S Prabhakaran, HJ Bussemaker
bioRxiv, 096735, 2016
12016
Neural network for processing aptamer data
MTH Dimon, M Berndl, MA Coram, B Trippe, PF Riley, PC Nelson
US Patent App. 18/307,748, 2024
2024
Twisted Diffusion Sampling for Accurate Conditional Generation, with Application to Protein Design
BL Trippe
2023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20