Seguir
Kaize Ding
Kaize Ding
Assistant Professor of Stats & Data Science, Northwestern University
Dirección de correo verificada de northwestern.edu - Página principal
Título
Citado por
Citado por
Año
Deep anomaly detection on attributed networks
K Ding, J Li, R Bhanushali, H Liu
Proceedings of the 2019 SIAM International Conference on Data Mining, 594-602, 2019
3862019
Next-item recommendation with sequential hypergraphs
J Wang, K Ding, L Hong, H Liu, J Caverlee
Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020
2302020
Be more with less: Hypergraph attention networks for inductive text classification
K Ding, J Wang, J Li, D Li, H Liu
EMNLP 2020, 2020
1912020
Data augmentation for deep graph learning: A survey
K Ding, Z Xu, H Tong, H Liu
ACM SIGKDD Explorations Newsletter 24 (2), 61-77, 2022
1832022
Combating disinformation in a social media age
K Shu, A Bhattacharjee, F Alatawi, TH Nazer, K Ding, M Karami, H Liu
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10 (6 …, 2020
1602020
Interactive anomaly detection on attributed networks
K Ding, J Li, H Liu
Proceedings of the twelfth ACM international conference on web search and …, 2019
1502019
Graph prototypical networks for few-shot learning on attributed networks
K Ding, J Wang, J Li, K Shu, C Liu, H Liu
Proceedings of the 29th ACM International Conference on Information …, 2020
1272020
Few-shot network anomaly detection via cross-network meta-learning
K Ding, Q Zhou, H Tong, H Liu
Proceedings of the Web Conference 2021, 2448-2456, 2021
1012021
Session-based recommendation with hypergraph attention networks
J Wang, K Ding, Z Zhu, J Caverlee
Proceedings of the 2021 SIAM international conference on data mining (SDM …, 2021
772021
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs
K Liu, Y Dou, Y Zhao, X Ding, X Hu, R Zhang, K Ding, C Chen, H Peng, ...
arXiv preprint arXiv:2206.10071, 2022
74*2022
Inductive anomaly detection on attributed networks
K Ding, J Li, N Agarwal, H Liu
Proceedings of the Twenty-Ninth International Conference on International …, 2020
712020
Graph few-shot learning with attribute matching
N Wang, M Luo, K Ding, L Zhang, J Li, Q Zheng
Proceedings of the 29th ACM International Conference on Information …, 2020
702020
Adagnn: Graph neural networks with adaptive frequency response filter
Y Dong, K Ding, B Jalaian, S Ji, J Li
Proceedings of the 30th ACM international conference on information …, 2021
532021
Graph few-shot class-incremental learning
Z Tan, K Ding, R Guo, H Liu
Proceedings of the fifteenth ACM international conference on web search and …, 2022
502022
Sequential recommendation for cold-start users with meta transitional learning
J Wang, K Ding, J Caverlee
Proceedings of the 44th International ACM SIGIR Conference on Research and …, 2021
452021
Few-shot learning on graphs
C Zhang, K Ding, J Li, X Zhang, Y Ye, NV Chawla, H Liu
arXiv preprint arXiv:2203.09308, 2022
382022
Pygod: A python library for graph outlier detection
K Liu, Y Dou, X Ding, X Hu, R Zhang, H Peng, L Sun, SY Philip
Journal of Machine Learning Research 25 (141), 1-9, 2024
352024
GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection
Y Liu, K Ding, H Liu, S Pan
WSDM 2023, 2022
332022
Cross-domain graph anomaly detection
K Ding, K Shu, X Shan, J Li, H Liu
IEEE Transactions on Neural Networks and Learning Systems 33 (6), 2406-2415, 2021
322021
Task-adaptive few-shot node classification
S Wang, K Ding, C Zhang, C Chen, J Li
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
312022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20