Seguir
Bernhard Pfahringer
Bernhard Pfahringer
Professor of Computer Science, University of Waikato
Dirección de correo verificada de waikato.ac.nz - Página principal
Título
Citado por
Citado por
Año
The WEKA data mining software: an update
M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten
ACM SIGKDD explorations newsletter 11 (1), 10-18, 2009
244132009
Moa: Massive online analysis, a framework for stream classification and clustering
A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl
Proceedings of the first workshop on applications of pattern analysis, 44-50, 2010
20252010
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine learning 85, 333-359, 2011
20222011
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2009
9392009
New ensemble methods for evolving data streams
A Bifet, G Holmes, B Pfahringer, R Kirkby, R Gavalda
Proceedings of the 15th ACM SIGKDD international conference on Knowledge …, 2009
7652009
Weka-a machine learning workbench for data mining
E Frank, M Hall, G Holmes, R Kirkby, B Pfahringer, IH Witten, L Trigg
Data mining and knowledge discovery handbook, 1269-1277, 2010
7212010
Multinomial naive bayes for text categorization revisited
AM Kibriya, E Frank, B Pfahringer, G Holmes
AI 2004: Advances in Artificial Intelligence: 17th Australian Joint …, 2005
5602005
Multi-label classification using ensembles of pruned sets
J Read, B Pfahringer, G Holmes
2008 eighth IEEE international conference on data mining, 995-1000, 2008
5222008
Meta-Learning by Landmarking Various Learning Algorithms.
B Pfahringer, H Bensusan, CG Giraud-Carrier
ICML, 743-750, 2000
5192000
Locally weighted naive bayes
E Frank, M Hall, B Pfahringer
arXiv preprint arXiv:1212.2487, 2012
4682012
WEKA---Experiences with a Java Open-Source Project
RR Bouckaert, E Frank, MA Hall, G Holmes, B Pfahringer, P Reutemann, ...
The Journal of Machine Learning Research 11, 2533-2541, 2010
4322010
Active learning with drifting streaming data
I Žliobaitė, A Bifet, B Pfahringer, G Holmes
IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013
3852013
Leveraging bagging for evolving data streams
A Bifet, G Holmes, B Pfahringer
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2010
3742010
Winning the KDD99 classification cup: bagged boosting
B Pfahringer
ACM SIGKDD Explorations Newsletter 1 (2), 65-66, 2000
3222000
Regularisation of neural networks by enforcing lipschitz continuity
H Gouk, E Frank, B Pfahringer, MJ Cree
Machine Learning 110, 393-416, 2021
3212021
Meka: a multi-label/multi-target extension to weka
J Read, P Reutemann, B Pfahringer, G Holmes
2912016
Multiclass alternating decision trees
G Holmes, B Pfahringer, R Kirkby, E Frank, M Hall
Machine Learning: ECML 2002: 13th European Conference on Machine Learning …, 2002
2452002
Machine learning for data streams: with practical examples in MOA
A Bifet, R Gavalda, G Holmes, B Pfahringer
MIT press, 2018
2382018
A two-level learning method for generalized multi-instance problems
N Weidmann, E Frank, B Pfahringer
ECML 3, 468-479, 2003
2112003
New options for hoeffding trees
B Pfahringer, G Holmes, R Kirkby
AI 2007: Advances in Artificial Intelligence: 20th Australian Joint …, 2007
2092007
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20