Seguir
Erin Grant
Erin Grant
Senior Research Fellow, University College London
Dirección de correo verificada de berkeley.edu - Página principal
Título
Citado por
Citado por
Año
Recasting gradient-based meta-learning as hierarchical Bayes
E Grant, C Finn, S Levine, T Darrell, TL Griffiths
International Conference on Learning Representations (ICLR), 2018
4562018
Reconciling meta-learning and continual learning with online mixtures of tasks
G Jerfel*, E Grant*, TL Griffiths, K Heller
Advances in Neural Information Processing Systems (NeurIPS), 2019
97*2019
Doing more with less: Meta-reasoning and meta-learning in humans and machines
TL Griffiths, F Callaway, MB Chang, E Grant, PM Krueger, F Lieder
Current Opinion in Behavioral Sciences 29, 24-30, 2019
772019
Are convolutional neural networks or transformers more like human vision?
S Tuli, I Dasgupta, E Grant, TL Griffiths
Annual Meeting of the Cognitive Science Society (CogSci), 2021
612021
Evaluating theory of mind in question answering
A Nematzadeh, K Burns, E Grant, A Gopnik, TL Griffiths
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018
322018
Universal linguistic inductive biases via meta-learning
RT McCoy, E Grant, P Smolensky, TL Griffiths, T Linzen
Annual Meeting of the Cognitive Science Society (CogSci), 2020
152020
Exploiting attention to reveal shortcomings in memory models
K Burns, A Nematzadeh, E Grant, A Gopnik, TL Griffiths
EMNLP Workshop on BlackboxNLP: Analyzing and Interpreting Neural Networks …, 2018
82018
Passive attention in artificial neural networks predicts human visual selectivity
TA Langlois, HC Zhao, E Grant, I Dasgupta, TL Griffiths, N Jacoby
Advances in Neural Information Processing Systems (NeurIPS), 2021
72021
A computational cognitive model of novel word generalization
A Nematzadeh, E Grant, S Stevenson
Conference on Empirical Methods in Natural Language Processing (EMNLP), 1795 …, 2015
62015
How can memory-augmented neural networks pass a false-belief task?
E Grant, A Nematzadeh, TL Griffiths
Annual Meeting of the Cognitive Science Society (CogSci), 2017
52017
Learning deep taxonomic priors for concept learning from few positive examples
E Grant, JC Peterson, TL Griffiths
Annual Meeting of the Cognitive Science Society (CogSci), 2019
32019
Distinguishing rule-and exemplar-based generalization in learning systems
I Dasgupta*, E Grant*, TL Griffiths
International Conference on Machine Learning (ICML), 2022
22022
Concept acquisition through meta-learning
E Grant, C Finn, J Peterson, J Abbott, S Levine, T Darrell, TL Griffiths
NeurIPS Workshop on Cognitively Informed Artificial Intelligence, 2017
22017
The interaction of memory and attention in novel word generalization: A computational investigation
E Grant, A Nematzadeh, S Stevenson
Annual Meeting of the Cognitive Science Society (CogSci), 2016
22016
Predicting generalization with degrees of freedom in neural networks
E Grant, Y Wu
ICML 2022 2nd AI for Science Workshop, 2022
12022
Meta-learning inductive biases of learning systems with Gaussian processes
MY Li, E Grant, TL Griffiths
Fifth Workshop on Meta-Learning at the Conference on Neural Information …, 2021
12021
Connecting context-specific adaptation in humans to meta-learning
R Dubey, E Grant, M Luo, K Narasimhan, T Griffiths
arXiv e-prints, arXiv: 2011.13782, 2020
12020
Tracing the emergence of gendered language in childhood
B Prystawski, E Grant, A Nematzadeh, SWS Lee, S Stevenson, Y Xu
Annual Meeting of the Cognitive Science Society (CogSci), 2020
12020
Gaussian process surrogate models for neural networks
MY Li, E Grant, TL Griffiths
arXiv preprint arXiv:2208.06028, 2022
2022
Cognitive analyses of machine learning systems
EM Grant
UC Berkeley, 2022
2022
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20