Seguir
Hamed Hassani
Hamed Hassani
Electrical Engineering, Computer Science, and Statistics; University of Pennsylvania
Dirección de correo verificada de seas.upenn.edu - Página principal
Título
Citado por
Citado por
Año
Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization
A Reisizadeh, A Mokhtari, H Hassani, A Jadbabaie, R Pedarsani
International Conference on Artificial Intelligence and Statistics, 2021-2031, 2020
5912020
Efficient and accurate estimation of lipschitz constants for deep neural networks
M Fazlyab, A Robey, H Hassani, M Morari, G Pappas
Advances in Neural Information Processing Systems 32, 2019
3722019
Exploiting shared representations for personalized federated learning
L Collins, H Hassani, A Mokhtari, S Shakkottai
International conference on machine learning, 2089-2099, 2021
3352021
Fast and provably good seedings for k-means
O Bachem, M Lucic, H Hassani, A Krause
Advances in neural information processing systems 29, 2016
1822016
Finite-length scaling of polar codes
SH Hassani, K Alishahi, R Urbanke
arXiv preprint arXiv:1304.4778, 2013
180*2013
Approximate k-means++ in sublinear time
O Bachem, M Lucic, SH Hassani, A Krause
Proceedings of the AAAI conference on artificial intelligence 30 (1), 2016
1592016
On the construction of polar codes
R Pedarsani, SH Hassani, I Tal, E Telatar
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on …, 2011
1462011
An exact quantized decentralized gradient descent algorithm
A Reisizadeh, A Mokhtari, H Hassani, R Pedarsani
IEEE Transactions on Signal Processing 67 (19), 4934-4947, 2019
143*2019
Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors
M Mondelli, SH Hassani, RL Urbanke
IEEE Transactions on Information Theory 62 (12), 6698-6712, 2016
1402016
From polar to Reed-Muller codes: A technique to improve the finite-length performance
M Mondelli, SH Hassani, RL Urbanke
IEEE Transactions on Communications 62 (9), 3084-3091, 2014
1362014
Growing a graph matching from a handful of seeds
E Kazemi, SH Hassani, M Grossglauser
Proceedings of the VLDB Endowment 8 (10), 1010-1021, 2015
1322015
Gradient methods for submodular maximization
H Hassani, M Soltanolkotabi, A Karbasi
Advances in Neural Information Processing Systems 30, 2017
1252017
Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients
A Mitra, R Jaafar, GJ Pappas, H Hassani
Advances in Neural Information Processing Systems 34, 14606-14619, 2021
115*2021
Stochastic conditional gradient methods: From convex minimization to submodular maximization
A Mokhtari, H Hassani, A Karbasi
The Journal of Machine Learning Research 21 (1), 4232-4280, 2020
1122020
Age of information in random access channels
X Chen, K Gatsis, H Hassani, SS Bidokhti
IEEE Transactions on Information Theory 68 (10), 6548-6568, 2022
1072022
Universal polar codes
SH Hassani, R Urbanke
2014 IEEE International Symposium on Information Theory, 1451-1455, 2014
1032014
How to achieve the capacity of asymmetric channels
M Mondelli, R Urbanke, SH Hassani
2014 52nd Annual Allerton Conference on Communication, Control, and …, 2014
96*2014
Model-based domain generalization
A Robey, GJ Pappas, H Hassani
Advances in Neural Information Processing Systems 34, 20210-20229, 2021
952021
Precise tradeoffs in adversarial training for linear regression
A Javanmard, M Soltanolkotabi, H Hassani
Conference on Learning Theory, 2034-2078, 2020
942020
Robust and communication-efficient collaborative learning
A Reisizadeh, H Taheri, A Mokhtari, H Hassani, R Pedarsani
Advances in Neural Information Processing Systems 32, 2019
942019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20