Vasyl Kovalishyn \ Ковалішин Василь Володимирович
Vasyl Kovalishyn \ Ковалішин Василь Володимирович
Otros nombresVasily Kovalishyn, Vasily Kovalishin, VV Kovalishin
V.P. Kukhar Institute of Bioorganic Chemistry and Petroсhemistry, NAS of Ukraine, PhD, Senior
Dirección de correo verificada de
Citado por
Citado por
Synthesis and structure–antituberculosis activity relationship of 1H-indole-2, 3-dione derivatives
N Karalı, A Gürsoy, F Kandemirli, N Shvets, FB Kaynak, S Özbey, ...
Bioorganic & medicinal chemistry 15 (17), 5888-5904, 2007
Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity
F Martins, S Santos, C Ventura, R Elvas-Leitão, L Santos, S Vitorino, ...
European journal of medicinal chemistry 81, 119-138, 2014
Applicability domain for in silico models to achieve accuracy of experimental measurements
I Sushko, S Novotarskyi, R Körner, AK Pandey, VV Kovalishyn, ...
Journal of chemometrics 24 (3‐4), 202-208, 2010
Neural network studies. 3. Variable selection in the cascade-correlation learning architecture
VV Kovalishyn, IV Tetko, AI Luik, VV Kholodovych, AEP Villa, ...
Journal of Chemical Information and Computer Sciences 38 (4), 651-659, 1998
Volume learning algorithm artificial neural networks for 3D QSAR studies
IV Tetko, VV Kovalishyn, DJ Livingstone
Journal of Medicinal Chemistry 44 (15), 2411-2420, 2001
A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids
N Abramenko, L Kustov, L Metelytsia, V Kovalishyn, I Tetko, ...
Journal of hazardous materials 384, 121429, 2020
Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents
MV Kachaeva, DM Hodyna, IV Semenyuta, SG Pilyo, VM Prokopenko, ...
Computational Biology and Chemistry 74, 294-303, 2018
1, 3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study
I Semenyuta, V Kovalishyn, V Tanchuk, S Pilyo, V Zyabrev, V Blagodatnyy, ...
Computational biology and chemistry 65, 8-15, 2016
Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform
V Kovalishyn, N Abramenko, I Kopernyk, L Charochkina, L Metelytsia, ...
Food and Chemical Toxicology 112, 507-517, 2018
Antibacterial Activity of Imidazolium‐Based Ionic Liquids Investigated by QSAR Modeling and Experimental Studies
D Hodyna, V Kovalishyn, S Rogalsky, V Blagodatnyi, K Petko, ...
Chemical Biology & Drug Design 88 (3), 422-433, 2016
Synthesis and structure–antibacterial activity relationship investigation of isomeric 2, 3, 5-substituted perhydropyrrolo [3, 4-d] isoxazole-4, 6-diones
H Agirbas, S Guner, F Budak, S Keceli, F Kandemirli, N Shvets, ...
Bioorganic & medicinal chemistry 15 (6), 2322-2333, 2007
Development of nanostructure–activity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making
G Chen, WJGM Peijnenburg, V Kovalishyn, MG Vijver
RSC advances 6 (57), 52227-52235, 2016
QSAR modeling of antitubercular activity of diverse organic compounds
V Kovalishyn, J Aires-de-Sousa, C Ventura, RE Leitão, F Martins
Chemometrics and Intelligent Laboratory Systems 107 (1), 69-74, 2011
The structure-antituberculosis activity relationships study in a series of 5-(4-aminophenyl)-4-substituted-2, 4-dihydro-3h-1, 2, 4-triazole-3-thione derivatives. A combined …
F Kandemirli, N Shvets, S Unsalan, I Kucukguzel, S Rollas, V Kovalishyn, ...
Medicinal Chemistry 2 (4), 415-422, 2006
Design of (quinolin-4-ylthio) carboxylic acids as new Escherichia coli DNA gyrase B inhibitors: machine learning studies, molecular docking, synthesis and biological testing
L Metelytsia, D Hodyna, I Dobrodub, I Semenyuta, M Zavhorodnii, ...
Computational Biology and Chemistry 85, 107224, 2020
Imidazolium ionic liquids as effective antiseptics and disinfectants against drug resistant S. aureus: In silico and in vitro studies
D Hodyna, V Kovalishyn, I Semenyuta, V Blagodatnyi, S Rogalsky, ...
Computational Biology and Chemistry 73, 127-138, 2018
Investigation of the physical and rheological properties of SBR-1712 rubber compounds by neural network approaches
E Demirhan, F Kandemirli, M Kandemirli, V Kovalishyn
Materials & design 28 (5), 1737-1741, 2007
Predictive QSAR modeling of phosphodiesterase 4 inhibitors
V Kovalishyn, V Tanchuk, L Charochkina, I Semenuta, V Prokopenko
Journal of Molecular Graphics and Modelling 32, 32-38, 2012
The structure-inhibitory activity relationships study in a series of cyclooxygenase-2 inhibitors: a combined electronic-topological and neural networks approach
A Dimoglo, V Kovalishyn, N Shvets, V Ahsen
Mini Reviews in Medicinal Chemistry 5 (10), 879-892, 2005
Application of artificial neural networks for the prediction of sulfur polycyclic aromatic compounds retention indices
H Can, A Dimoglo, V Kovalishyn
Journal of Molecular Structure: THEOCHEM 723 (1-3), 183-188, 2005
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20