Seguir
Kristjan Greenewald
Kristjan Greenewald
Research Scientist, MIT-IBM Watson AI Lab, IBM Research
Dirección de correo verificada de ibm.com - Página principal
Título
Citado por
Citado por
Año
Bayesian nonparametric federated learning of neural networks
M Yurochkin, M Agarwal, S Ghosh, K Greenewald, N Hoang, Y Khazaeni
International conference on machine learning, 7252-7261, 2019
8202019
The computational limits of deep learning
NC Thompson, K Greenewald, K Lee, GF Manso
arXiv preprint arXiv:2007.05558 10, 2020
7752020
Personalized heartsteps: A reinforcement learning algorithm for optimizing physical activity
P Liao, K Greenewald, P Klasnja, S Murphy
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2020
1972020
Estimating information flow in deep neural networks
Z Goldfeld, E Berg, K Greenewald, I Melnyk, N Nguyen, B Kingsbury, ...
arXiv preprint arXiv:1810.05728, 2018
1712018
Deep learning's diminishing returns: The cost of improvement is becoming unsustainable
NC Thompson, K Greenewald, K Lee, GF Manso
Ieee Spectrum 58 (10), 50-55, 2021
1642021
Convergence of smoothed empirical measures with applications to entropy estimation
Z Goldfeld, K Greenewald, J Niles-Weed, Y Polyanskiy
IEEE Transactions on Information Theory 66 (7), 4368-4391, 2020
87*2020
Action centered contextual bandits
K Greenewald, A Tewari, S Murphy, P Klasnja
Advances in neural information processing systems 30, 2017
632017
Identifiability guarantees for causal disentanglement from soft interventions
J Zhang, K Greenewald, C Squires, A Srivastava, K Shanmugam, C Uhler
Advances in Neural Information Processing Systems 36, 2024
542024
Tensor graphical lasso (TeraLasso)
K Greenewald, S Zhou, A Hero III
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2019
512019
Sample efficient active learning of causal trees
K Greenewald, D Katz, K Shanmugam, S Magliacane, M Kocaoglu, ...
Advances in Neural Information Processing Systems 32, 2019
482019
Sliced mutual information: A scalable measure of statistical dependence
Z Goldfeld, K Greenewald
Advances in Neural Information Processing Systems 34, 17567-17578, 2021
452021
Robust kronecker product PCA for spatio-temporal covariance estimation
K Greenewald, AO Hero
IEEE Transactions on Signal Processing 63 (23), 6368-6378, 2015
452015
Statistical model aggregation via parameter matching
M Yurochkin, M Agarwal, S Ghosh, K Greenewald, N Hoang
Advances in neural information processing systems 32, 2019
412019
Active structure learning of causal DAGs via directed clique trees
C Squires, S Magliacane, K Greenewald, D Katz, M Kocaoglu, ...
Advances in Neural Information Processing Systems 33, 21500-21511, 2020
392020
Gaussian-smoothed optimal transport: Metric structure and statistical efficiency
Z Goldfeld, K Greenewald
International Conference on Artificial Intelligence and Statistics, 3327-3337, 2020
382020
Improving convergence of divergence functional ensemble estimators
KR Moon, K Sricharan, K Greenewald, AO Hero
2016 IEEE International Symposium on Information Theory (ISIT), 1133-1137, 2016
342016
Kronecker sum decompositions of space-time data
K Greenewald, T Tsiligkaridis, AO Hero
2013 5th IEEE International Workshop on Computational Advances in Multi …, 2013
302013
Measuring generalization with optimal transport
CY Chuang, Y Mroueh, K Greenewald, A Torralba, S Jegelka
Advances in neural information processing systems 34, 8294-8306, 2021
292021
Ensemble estimation of information divergence
KR Moon, K Sricharan, K Greenewald, AO Hero III
Entropy 20 (8), 560, 2018
292018
Estimating information flow in neural networks
Z Goldfeld, E van den Berg, K Greenewald, I Melnyk, N Nguyen, ...
arXiv preprint arXiv:1810.05728, 2018
272018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20