Galerkin finite element approximations of stochastic elliptic partial differential equations I Babuska, R Tempone, GE Zouraris SIAM Journal on Numerical Analysis 42 (2), 800-825, 2004 | 1215 | 2004 |
Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation I Babuška, R Tempone, GE Zouraris Computer methods in applied mechanics and engineering 194 (12-16), 1251-1294, 2005 | 424 | 2005 |
Adaptive weak approximation of stochastic differential equations A Szepessy, R Tempone, GE Zouraris Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2001 | 98 | 2001 |
On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems M Plexousakis, GE Zouraris SIAM journal on numerical analysis 42 (3), 1226-1260, 2004 | 74 | 2004 |
On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 35 (3), 389-405, 2001 | 55 | 2001 |
Adaptive weak approximation of diffusions with jumps E Mordecki, A Szepessy, R Tempone, GE Zouraris SIAM Journal on Numerical Analysis 46 (4), 1732-1768, 2008 | 48 | 2008 |
Convergence rates for adaptive weak approximation of stochastic differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Stochastic analysis and applications 23 (3), 511-558, 2005 | 45 | 2005 |
Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise GT Kossioris, GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 44 (2), 289-322, 2010 | 39 | 2010 |
Convergence rates for adaptive approximation of ordinary differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Numerische Mathematik 96 (1), 99-129, 2003 | 31 | 2003 |
A variational principle for adaptive approximation of ordinary differential equations KS Moon, A Szepessy, R Tempone, GE Zouraris Numerische Mathematik 96 (1), 131-152, 2003 | 29 | 2003 |
Finite difference schemes for the" parabolic" equation in a variable depth environment with a rigid bottom boundary condition GD Akrivis, VA Dougalis, GE Zouraris SIAM Journal on Numerical Analysis 39 (2), 539-565, 2001 | 29 | 2001 |
Stochastic differential equations: Models and numerics J Carlsson, KS Moon, A Szepessy, R Tempone, G Zouraris Lecture notes, 2010 | 20 | 2010 |
A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves P Xanthopoulos, GE Zouraris Discrete Contin. Dyn. Syst. Ser. B 10 (1), 239-263, 2008 | 20 | 2008 |
Error estimates for finite difference methods for a wide-angle “parabolic” equation GD Akrivis, VA Dougalis, GE Zouraris SIAM journal on numerical analysis 33 (6), 2488-2509, 1996 | 19 | 1996 |
Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics DC Antonopoulou, VA Dougalis, GE Zouraris SIAM Journal on Numerical Analysis 47 (4), 2752-2781, 2009 | 17 | 2009 |
Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise G Kossioris, G Zouraris Discrete and Continuous Dynamical Systems-Series B 18 (7), 1845-1872, 2013 | 16 | 2013 |
Stochastic and partial differential equations with adapted numerics J Goodman, KS Moon, A Szepessy, R Tempone, G Zouraris Lecture Notes, 2002 | 16 | 2002 |
Error estimation of the relaxation finite difference scheme for the nonlinear Schrödinger equation GE Zouraris SIAM Journal on Numerical Analysis 61 (1), 365-397, 2023 | 14 | 2023 |
Theory and numerical approximations for a nonlinear 1+ 1 Dirac system N Bournaveas, GE Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 46 (4), 841-874, 2012 | 14 | 2012 |
Hyperbolic differential equations and adaptive numerics KS Moon, A Szepessy, R Tempone, G Zouraris Theory and Numerics of Differential Equations: Durham 2000, 231-280, 2001 | 13 | 2001 |