Seguir
Mohsen Fayyaz
Mohsen Fayyaz
Dirección de correo verificada de microsoft.com - Página principal
Título
Citado por
Citado por
Año
Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes
M Sabokrou*, M Fayyaz*, M Fathy, Z Moayed, R Klette
Computer Vision and Image Understanding, 2018
4322018
Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes
M Sabokrou, M Fayyaz, M Fathy, R Klette
IEEE Transactions on Image Processing 26 (4), 1992-2004, 2017
3472017
Temporal 3d convnets: New architecture and transfer learning for video classification
A Diba, M Fayyaz, V Sharma, AH Karami, MM Arzani, R Yousefzadeh, ...
arXiv preprint arXiv:1711.08200, 2017
2682017
Spatio-temporal channel correlation networks for action classification
A Diba*, M Fayyaz*, V Sharma, M Mahdi Arzani, R Yousefzadeh, J Gall, ...
Proceedings of the European Conference on Computer Vision (ECCV), 284-299, 2018
1862018
Lets keep it simple, using simple architectures to outperform deeper and more complex architectures
SH Hasanpour, M Rouhani, M Fayyaz, M Sabokrou
arXiv preprint arXiv:1608.06037, 2016
1112016
AVID: Adversarial Visual Irregularity Detection
M Sabokrou*, M Pourreza*, M Fayyaz*, R Entezari, M Fathy, J Gall, ...
Asian Conference on Computer Vision, 488-505, 2018
1042018
Large Scale Holistic Video Understanding
A Diba*, M Fayyaz*, V Sharma*, M Paluri, J Gall, R Stiefelhagen, ...
European Conference on Computer Vision, 593-610, 2020
99*2020
STFCN: spatio-temporal FCN for semantic video segmentation
M Fayyaz, MH Saffar, M Sabokrou, M Fathy, R Klette, F Huang
arXiv preprint arXiv:1608.05971, 2016
702016
Sct: Set constrained temporal transformer for set supervised action segmentation
M Fayyaz, J Gall
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
512020
Towards principled design of deep convolutional networks: Introducing simpnet
SH HasanPour, M Rouhani, M Fayyaz, M Sabokrou, E Adeli
arXiv preprint arXiv:1802.06205, 2018
452018
Fast weakly supervised action segmentation using mutual consistency
Y Souri*, M Fayyaz*, L Minciullo, G Francesca, J Gall
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
412021
Adaptive token sampling for efficient vision transformers
M Fayyaz, SA Koohpayegani, FR Jafari, S Sengupta, HRV Joze, ...
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel …, 2022
38*2022
Temporal 3d convnets using temporal transition layer
A Diba, M Fayyaz, V Sharma, A Hossein Karami, M Mahdi Arzani, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
372018
STFCN: spatio-temporal fully convolutional neural network for semantic segmentation of street scenes
M Fayyaz, MH Saffar, M Sabokrou, M Fathy, F Huang, R Klette
Asian Conference on Computer Vision, 493-509, 2016
332016
Long short view feature decomposition via contrastive video representation learning
N Behrmann, M Fayyaz, J Gall, M Noroozi
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
262021
Online signature verification based on feature representation
M Fayyaz, MH Saffar, M Sabokrou, M Hoseini, M Fathy
2015 the international symposium on artificial intelligence and signal …, 2015
252015
Online signature verification using deep representation: a new descriptor
MH Saffar, M Fayyaz, M Sabokrou, M Fathy
arXiv preprint arXiv:1806.09986, 2018
23*2018
Diffusion models for medical image analysis: A comprehensive survey
A Kazerouni, EK Aghdam, M Heidari, R Azad, M Fayyaz, I Hacihaliloglu, ...
arXiv preprint arXiv:2211.07804, 2022
212022
3D CNNs with Adaptive Temporal Feature Resolutions
M Fayyaz, E Bahrami, A Diba, M Noroozi, E Adeli, L Van Gool, J Gall
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
172021
A novel approach for finger vein verification based on self-taught learning
M Fayyaz, M Hajizadeh-Saffar, M Sabokrou, M Hoseini, M Fathy
2015 9th Iranian Conference on Machine Vision and Image Processing (MVIP), 88-91, 2015
172015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20