Sumit Chopra
Sumit Chopra
Courant Institute of Mathematical Sciences, NYU
Dirección de correo verificada de - Página principal
Citado por
Citado por
Dimensionality reduction by learning an invariant mapping
R Hadsell, S Chopra, Y LeCun
2006 IEEE computer society conference on computer vision and pattern …, 2006
Learning a similarity metric discriminatively, with application to face verification
S Chopra, R Hadsell, Y LeCun
2005 IEEE computer society conference on computer vision and pattern …, 2005
A neural attention model for abstractive sentence summarization
AM Rush, S Chopra, J Weston
arXiv preprint arXiv:1509.00685, 2015
Memory networks
J Weston, S Chopra, A Bordes
arXiv preprint arXiv:1410.3916, 2014
Efficient learning of sparse representations with an energy-based model
MA Ranzato, C Poultney, S Chopra, Y Cun
Advances in neural information processing systems 19, 2006
Sequence level training with recurrent neural networks
MA Ranzato, S Chopra, M Auli, W Zaremba
arXiv preprint arXiv:1511.06732, 2015
A tutorial on energy-based learning
Y LeCun, S Chopra, R Hadsell, M Ranzato, F Huang
Predicting structured data 1 (0), 2006
Towards ai-complete question answering: A set of prerequisite toy tasks
J Weston, A Bordes, S Chopra, AM Rush, B Van Merriënboer, A Joulin, ...
arXiv preprint arXiv:1502.05698, 2015
Abstractive sentence summarization with attentive recurrent neural networks
S Chopra, M Auli, AM Rush
Proceedings of the 2016 conference of the North American chapter of the …, 2016
Question answering with subgraph embeddings
A Bordes, S Chopra, J Weston
arXiv preprint arXiv:1406.3676, 2014
Large-scale simple question answering with memory networks
A Bordes, N Usunier, S Chopra, J Weston
arXiv preprint arXiv:1506.02075, 2015
The goldilocks principle: Reading children's books with explicit memory representations
F Hill, A Bordes, S Chopra, J Weston
arXiv preprint arXiv:1511.02301, 2015
Video (language) modeling: a baseline for generative models of natural videos
MA Ranzato, A Szlam, J Bruna, M Mathieu, R Collobert, S Chopra
arXiv preprint arXiv:1412.6604, 2014
Deep neural network improves fracture detection by clinicians
R Lindsey, A Daluiski, S Chopra, A Lachapelle, M Mozer, S Sicular, ...
Proceedings of the National Academy of Sciences 115 (45), 11591-11596, 2018
Learning through dialogue interactions by asking questions
J Li, AH Miller, S Chopra, MA Ranzato, J Weston
arXiv preprint arXiv:1612.04936, 2016
Learning longer memory in recurrent neural networks
T Mikolov, A Joulin, S Chopra, M Mathieu, MA Ranzato
arXiv preprint arXiv:1412.7753, 2014
Starspace: Embed all the things!
L Wu, A Fisch, S Chopra, K Adams, A Bordes, J Weston
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
Dlid: Deep learning for domain adaptation by interpolating between domains
S Chopra, S Balakrishnan, R Gopalan
ICML workshop on challenges in representation learning 2 (6), 2013
Evaluating prerequisite qualities for learning end-to-end dialog systems
J Dodge, A Gane, X Zhang, A Bordes, S Chopra, A Miller, A Szlam, ...
arXiv preprint arXiv:1511.06931, 2015
# tagspace: Semantic embeddings from hashtags
J Weston, S Chopra, K Adams
Proceedings of the 2014 conference on empirical methods in natural language …, 2014
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20