Lithium chlorides and bromides as promising solid‐state chemistries for fast ion conductors with good electrochemical stability S Wang, Q Bai, AM Nolan, Y Liu, S Gong, Q Sun, Y Mo Angewandte Chemie International Edition 58 (24), 8039-8043, 2019 | 434 | 2019 |
Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications H Kwak, S Wang, J Park, Y Liu, KT Kim, Y Choi, Y Mo, YS Jung ACS Energy Letters 7 (5), 1776-1805, 2022 | 161 | 2022 |
Crystal structural framework of lithium super‐ionic conductors X He, Q Bai, Y Liu, AM Nolan, C Ling, Y Mo Advanced Energy Materials 9 (43), 1902078, 2019 | 147 | 2019 |
Tailoring the cation lattice for chloride lithium‐ion conductors Y Liu, S Wang, AM Nolan, C Ling, Y Mo Advanced Energy Materials 10 (40), 2002356, 2020 | 89 | 2020 |
Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries AM Nolan, Y Liu, Y Mo ACS Energy Letters 4 (10), 2444-2451, 2019 | 85 | 2019 |
Interfacial atomistic mechanisms of lithium metal stripping and plating in solid‐state batteries M Yang, Y Liu, AM Nolan, Y Mo Advanced Materials 33 (11), 2008081, 2021 | 77 | 2021 |
Frustration in Super‐Ionic Conductors Unraveled by the Density of Atomistic States S Wang, Y Liu, Y Mo Angewandte Chemie International Edition 62 (15), e202215544, 2023 | 34 | 2023 |
Lithium crystallization at solid interfaces M Yang, Y Liu, Y Mo Nature Communications 14 (1), 2986, 2023 | 25 | 2023 |
Computation‐Guided Synthesis of New Garnet‐Type Solid‐State Electrolytes via an Ultrafast Sintering Technique R Wang, W Ping, C Wang, Y Liu, J Gao, Q Dong, X Wang, Y Mo, L Hu Advanced Materials 32 (46), 2005059, 2020 | 21 | 2020 |
Can substitutions affect the oxidative stability of lithium argyrodite solid electrolytes? A Banik, Y Liu, S Ohno, Y Rudel, A Jiménez-Solano, A Gloskovskii, ... ACS applied energy materials 5 (2), 2045-2053, 2022 | 17 | 2022 |
Discrepancies and the Error Evaluation Metrics for Machine Learning Interatomic Potentials Y Liu, X He, Y Mo npj Computational Materials 9 (1), 174, 2023 | 9 | 2023 |
Assessing the accuracy of machine learning interatomic potentials in predicting the elemental orderings: A case study of Li-Al alloys Y Liu, Y Mo Acta Materialia 268, 119742, 2024 | 6 | 2024 |
Metal lithium chloride derivatives in the space group of P21/c as Li super-ionic conductor, solid electrolyte, and coating layer for Li metal battery and Li-ion battery CL Yifei Mo, LIU Yunsheng US Patent 11,641,029, 2023 | 2 | 2023 |
METAL LITHIUM CHLORIDE DERIVATIVES IN THE SPACE GROUP of P21/c as Li SUPER-IONIC CONDUCTOR, SOLID ELECTROLYTE, and COATING LAYER for Li METAL BATTERY and Li-ION BATTERY Y Mo, Y LIU, C Ling US Patent App. 16/909,742, 2021 | 2 | 2021 |
LiZnCl4 DERIVATIVES IN THE SPACE GROUP of Pmn21 as Li SUPER-IONIC CONDUCTOR, SOLID ELECTROLYTE, and COATING LAYER for Li METAL BATTERY and Li-ION BATTERY Y Mo, Y Liu, C Ling US Patent App. 16/909,645, 2021 | 1* | 2021 |
Learning from models: high-dimensional analyses on the performance of machine learning interatomic potentials Y Liu, Y Mo npj Computational Materials 10 (1), 159, 2024 | | 2024 |
Exploring the discrepancies, the extrapolability, and the interpolability of machine learning interatomic potentials Y Liu, Y Mo APS March Meeting Abstracts 2023, G60. 010, 2023 | | 2023 |
LiAlC14 derivatives in the space group of Pnma as Li super-ionic conductor, solid electrolyte, and coating layer for Li metal battery and Li-ion battery Y Mo, Y Liu, X He, C Ling US Patent 11,462,766, 2022 | | 2022 |