Seguir
Michael Cogswell
Michael Cogswell
Dirección de correo verificada de sri.com - Página principal
Título
Citado por
Citado por
Año
Grad-cam: Visual explanations from deep networks via gradient-based localization
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
Proceedings of the IEEE international conference on computer vision, 618-626, 2017
210182017
Diverse beam search: Decoding diverse solutions from neural sequence models
AK Vijayakumar, M Cogswell, RR Selvaraju, Q Sun, S Lee, D Crandall, ...
arXiv preprint arXiv:1610.02424, 2016
5002016
Reducing overfitting in deep networks by decorrelating representations
M Cogswell, F Ahmed, R Girshick, L Zitnick, D Batra
arXiv preprint arXiv:1511.06068, 2015
4792015
Why m heads are better than one: Training a diverse ensemble of deep networks
S Lee, S Purushwalkam, M Cogswell, D Crandall, D Batra
arXiv preprint arXiv:1511.06314, 2015
3012015
Proceedings of the IEEE international conference on computer vision
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
Proceedings of the IEEE international conference on computer vision [J], 2017
2502017
Diverse beam search for improved description of complex scenes
A Vijayakumar, M Cogswell, R Selvaraju, Q Sun, S Lee, D Crandall, ...
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
2282018
Stochastic multiple choice learning for training diverse deep ensembles
S Lee, S Purushwalkam Shiva Prakash, M Cogswell, V Ranjan, ...
Advances in Neural Information Processing Systems 29, 2016
1952016
Grad-CAM: Visual explanations from deep networks via gradient-based localization. arXiv 2016
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
arXiv preprint arXiv:1610.02391 8, 2022
822022
Emergence of compositional language with deep generational transmission
M Cogswell, J Lu, S Lee, D Parikh, D Batra
arXiv preprint arXiv:1904.09067, 2019
562019
Running students' software tests against each others' code: new life for an old" gimmick"
SH Edwards, Z Shams, M Cogswell, RC Senkbeil
Proceedings of the 43rd ACM technical symposium on Computer Science …, 2012
472012
Trigger hunting with a topological prior for trojan detection
X Hu, X Lin, M Cogswell, Y Yao, S Jha, C Chen
arXiv preprint arXiv:2110.08335, 2021
292021
Combining the best of graphical models and convnets for semantic segmentation
M Cogswell, X Lin, S Purushwalkam, D Batra
arXiv preprint arXiv:1412.4313, 2014
222014
Dress: Instructing large vision-language models to align and interact with humans via natural language feedback
Y Chen, K Sikka, M Cogswell, H Ji, A Divakaran
arXiv preprint arXiv:2311.10081, 2023
132023
Dialog without dialog data: Learning visual dialog agents from VQA data
M Cogswell, J Lu, R Jain, S Lee, D Parikh, D Batra
Advances in Neural Information Processing Systems 33, 19988-19999, 2020
132020
Unpacking large language models with conceptual consistency
P Sahu, M Cogswell, Y Gong, A Divakaran
arXiv preprint arXiv:2209.15093, 2022
102022
Measuring and improving chain-of-thought reasoning in vision-language models
Y Chen, K Sikka, M Cogswell, H Ji, A Divakaran
arXiv preprint arXiv:2309.04461, 2023
92023
Probing conceptual understanding of large visual-language models
MC Schiappa, M Cogswell, A Divakaran, YS Rawat
arXiv preprint arXiv:2304.03659, 2023
52023
Improving users' mental model with attention‐directed counterfactual edits
K Alipour, A Ray, X Lin, M Cogswell, JP Schulze, Y Yao, GT Burachas
Applied AI Letters 2 (4), e47, 2021
52021
Comprehension based question answering using Bloom's Taxonomy
P Sahu, M Cogswell, S Rutherford-Quach, A Divakaran
arXiv preprint arXiv:2106.04653, 2021
52021
Grad 鄄 cam: visual explanations from deep networks via gradient 鄄 based localization
RR SELVARAJU, M COGSWELL, A DAS
椅 Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern …, 2017
52017
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20