Dingyi Zhuang (庄丁奕)
Dingyi Zhuang (庄丁奕)
Dirección de correo verificada de - Página principal
Citado por
Citado por
Inductive graph neural networks for spatiotemporal kriging
Y Wu, D Zhuang, A Labbe, L Sun
Proceedings of the AAAI Conference on Artificial Intelligence 35 (5), 4478-4485, 2020
Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks
D Zhuang, S Wang, H Koutsopoulos, J Zhao
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
Low-rank Hankel tensor completion for traffic speed estimation
X Wang, Y Wu, D Zhuang, L Sun
IEEE Transactions on Intelligent Transportation Systems, 2021
Understanding the bike sharing travel demand and cycle lane network: The case of Shanghai
D Zhuang, JG Jin, Y Shen, W Jiang
International journal of sustainable transportation 15 (2), 111-123, 2021
Spatial aggregation and temporal convolution networks for real-time kriging
Y Wu, D Zhuang, M Lei, A Labbe, L Sun
arXiv preprint arXiv:2109.12144, 2021
From compound word to metropolitan station: Semantic similarity analysis using smart card data
D Zhuang, S Hao, DH Lee, JG Jin
Transportation Research Part C: Emerging Technologies 114, 322-337, 2020
A universal framework of spatiotemporal bias block for long-term traffic forecasting
F Liu, J Wang, J Tian, D Zhuang, L Miranda-Moreno, L Sun
IEEE Transactions on Intelligent Transportation Systems 23 (10), 19064-19075, 2022
Uncertainty quantification of spatiotemporal travel demand with probabilistic graph neural networks
Q Wang, S Wang, D Zhuang, H Koutsopoulos, J Zhao
IEEE Transactions on Intelligent Transportation Systems, 2024
Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction
X Jiang, D Zhuang, X Zhang, H Chen, J Luo, X Gao
Proceeding of CIKM 2023, 2023
Spatiotemporal graph neural networks with uncertainty quantification for traffic incident risk prediction
X Gao, X Jiang, D Zhuang, H Chen, S Wang, J Haworth
arXiv preprint arXiv:2309.05072, 2023
Large Language Models for Travel Behavior Prediction
B Mo, H Xu, D Zhuang, R Ma, X Guo, J Zhao
arXiv preprint arXiv:2312.00819, 2023
Fairness-enhancing deep learning for ride-hailing demand prediction
Y Zheng, Q Wang, D Zhuang, S Wang, J Zhao
IEEE Open Journal of Intelligent Transportation Systems, 2023
ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent United Neural Networks
Z Wang, D Zhuang, Y Li, J Zhao, P Sun
Proceeding of the 26th IEEE International Conference on Intelligent …, 2023
Synergizing Spatial Optimization with Large Language Models for Open-Domain Urban Itinerary Planning
Y Tang, Z Wang, A Qu, Y Yan, K Hou, D Zhuang, X Guo, J Zhao, Z Zhao, ...
arXiv preprint arXiv:2402.07204, 2024
Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System
X Guo, H Xu, D Zhuang, Y Zheng, J Zhao
arXiv preprint arXiv:2401.00093, 2023
Timeseries Suppliers Allocation Risk Optimization via Deep Black Litterman Model
J Luo, W Zhang, Y Fang, X Gao, D Zhuang, H Chen, X Jiang
arXiv preprint arXiv:2401.17350, 2024
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
D Zhuang, Y Bu, G Wang, S Wang, J Zhao
Neural Information Processing Systems (NeurIPS) Temporal Graph Learning …, 2023
The Braess Paradox in Dynamic Traffic
D Zhuang, Y Huang, V Jayawardana, J Zhao, D Suo, C Wu
2022 IEEE 25th International Conference on Intelligent Transportation …, 2022
Advancing Transportation Mode Share Analysis with Built Environment: Deep Hybrid Models with Urban Road Network
D Zhuang, Q Wang, Y Zheng, X Guo, S Wang, HN Koutsopoulos, J Zhao
arXiv preprint arXiv:2405.14079, 2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–19