Seguir
R Devon Hjelm
R Devon Hjelm
Apple MLR, Mila
Dirección de correo verificada de apple.com - Página principal
Título
Citado por
Citado por
Año
Learning deep representations by mutual information estimation and maximization
RD Hjelm, A Fedorov, S Lavoie-Marchildon, K Grewal, P Bachman, ...
arXiv preprint arXiv:1808.06670, 2018
15362018
Mutual information neural estimation
MI Belghazi, A Baratin, S Rajeshwar, S Ozair, Y Bengio, A Courville, ...
International conference on machine learning, 531-540, 2018
1084*2018
Learning representations by maximizing mutual information across views
P Bachman, RD Hjelm, W Buchwalter
Advances in neural information processing systems 32, 2019
8012019
Deep Graph Infomax.
P Velickovic, W Fedus, WL Hamilton, P Liò, Y Bengio, RD Hjelm
ICLR (Poster), 2019
7802019
Deep learning for neuroimaging: a validation study
SM Plis, DR Hjelm, R Salakhutdinov, EA Allen, HJ Bockholt, JD Long, ...
Frontiers in neuroscience 8, 229, 2014
5492014
Deep graph infomax
P Veličković, W Fedus, WL Hamilton, P Liò, Y Bengio, RD Hjelm
arXiv preprint arXiv:1809.10341, 2018
2602018
Maximum-likelihood augmented discrete generative adversarial networks
T Che, Y Li, R Zhang, RD Hjelm, W Li, Y Song, Y Bengio
arXiv preprint arXiv:1702.07983, 2017
2342017
Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia
Q Yu, EB Erhardt, J Sui, Y Du, H He, D Hjelm, MS Cetin, S Rachakonda, ...
Neuroimage 107, 345-355, 2015
1882015
Boundary-seeking generative adversarial networks
RD Hjelm, AP Jacob, T Che, A Trischler, K Cho, Y Bengio
arXiv preprint arXiv:1702.08431, 2017
1732017
Unsupervised state representation learning in atari
A Anand, E Racah, S Ozair, Y Bengio, MA Côté, RD Hjelm
Advances in neural information processing systems 32, 2019
1562019
Restricted Boltzmann Machines for Neuroimaging: an Application in Identifying Intrinsic Networks
D Hjelm, V Calhoun, EA Allen, T Adali, R Salakhutdinov, SM Plis
NeuroImage, in Press, 2014
1462014
Data-Efficient Reinforcement Learning with Self-Predictive Representations
M Schwarzer, A Anand, R Goel, RD Hjelm, A Courville, P Bachman
882021
Tell, draw, and repeat: Generating and modifying images based on continual linguistic instruction
A El-Nouby, S Sharma, H Schulz, D Hjelm, LE Asri, SE Kahou, Y Bengio, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
56*2019
On adversarial mixup resynthesis
C Beckham, S Honari, V Verma, AM Lamb, F Ghadiri, RD Hjelm, Y Bengio, ...
Advances in neural information processing systems 32, 2019
402019
Reading the (functional) writing on the (structural) wall: Multimodal fusion of brain structure and function via a deep neural network based translation approach reveals novel …
SM Plis, MF Amin, A Chekroud, D Hjelm, E Damaraju, HJ Lee, JR Bustillo, ...
NeuroImage 181, 734-747, 2018
402018
Deep reinforcement and infomax learning
B Mazoure, R Tachet des Combes, TL Doan, P Bachman, RD Hjelm
Advances in Neural Information Processing Systems 33, 3686-3698, 2020
392020
Iterative refinement of the approximate posterior for directed belief networks
D Hjelm, RR Salakhutdinov, K Cho, N Jojic, V Calhoun, J Chung
Advances in neural information processing systems 29, 2016
39*2016
Locality and compositionality in zero-shot learning
T Sylvain, L Petrini, D Hjelm
arXiv preprint arXiv:1912.12179, 2019
362019
Leveraging exploration in off-policy algorithms via normalizing flows
B Mazoure, T Doan, A Durand, J Pineau, RD Hjelm
Conference on Robot Learning, 430-444, 2020
342020
On-line adaptative curriculum learning for gans
T Doan, J Monteiro, I Albuquerque, B Mazoure, A Durand, J Pineau, ...
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3470-3477, 2019
322019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20